期刊文献+

原煤识别模式在煤炭产量计量系统中的应用

Application of Raw Coal Pattern Recognition in the Output of Coal Calculation System
下载PDF
导出
摘要 为了准确计算煤矿的产量,需要把煤矸石的量减掉,针对这个问题,研究了基于图像识别的煤矸石识别技术,从煤矸石与煤炭的样本数据中分离数据,最终完成煤矸石的识别系统。采用自适应增强算法(AdaBoost算法)对实现目标的检测达到了很好的效果,虽然原煤图像存在着多样性,受到遮挡、光照、视角等的影响,通过AdaBoost算法对原煤数据库和非原煤数据库训练逐步提升原煤分类器性能,能成功实现原煤识别检测。论文中识别系统充分利用图像识别技术和人工智能思想,将机器学习引入煤矸石模型的建模环节,成功实现煤炭和煤矸石的区分。 In order to accurately calculate the output of coal mines , the amount of gangue is needed to subtract .To address this issue, the paper researches the proportion of raw coal and gangue identification system from the sample data of the coal gangue and raw coal based on image recognition training system .The adaptive enhancement algorithm ( AdaBoost algorithm ) is successfully applied in the detection of raw coal production and has a good effect for the achievement of the target detection .Although the raw coal image has its diversity and affected by the shelter , light and perspective , but it is able to successfully make the raw coal identify detection by Ada-Boost algorithm database of raw coal and non -coal database training , gradually improve the performance of raw coal classifier .With the full use of image recognition technology and artificial intelligence thinking , the machine learning is introduced to the gangue modeling aspects , and it is entirely feasible .
作者 宋志芳
出处 《山西电子技术》 2014年第3期24-26,共3页 Shanxi Electronic Technology
基金 山西省科技攻关项目(2007031161)
关键词 原煤识别模式 煤炭产量 ADABOOST算法 数学模型 图像识别 recognition mode of raw coal coal production AdaBoost algorithm mathematical model image recognition
  • 相关文献

参考文献11

二级参考文献90

  • 1张道强,陈松灿,潘志松.一般多值双向联想记忆模型及其在IP地址识别中的应用[J].应用科学学报,2004,22(3):279-282. 被引量:1
  • 2陈倩.毛主席纪念堂视频监测系统设计与实现[M].北京:清华大学,1997..
  • 3YLAJAASKI A,KIRYATI N.Adaptive termination of voting in the probabilistic circular hough transform[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1994,16(9):911-915.
  • 4KANATAN Kenichi,OHTA Naoya.Automatic detection of circular objects by ellipse growing[J].Memoirs of the Faculty of Engineering,2001,36(1):107-116.
  • 5HUM. Visual pattern recognition by moment invariant [J]. IRE Trans on Inf Theory, 1962, 8:179-187.
  • 6KHOTANZAD. A zernike moment based rotation invariant features for pattern recognition [J]. SPIE, 1988, 1002:212- 219.
  • 7SHEN D, HORACE H SIP. Discriminative wavelet shape descriptors for recognition of 2-D patterns [J]. Pattern Recognition, 1999,32(2) :151-165.
  • 8HARALICK R M, SHANMUGAM K, DINSTEIN I. Texture features for image classification [J]. IEEE Trans on System, Man and Cybernetics, 1973, 8(6):610-621.
  • 9TAMURA H, MORI S, YAMAWAKI T. Texture features corresponding to visual perception [J]. IEEE Trans on System, Man and Cybernetics, 1978,8(6):460-473.
  • 10ROSENFELD A, THURSTON M. Edge and curve detection for visual scene analysis [J]. IEEE Trans Computer, 1971, 20:512-519.

共引文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部