期刊文献+

基于信息熵的复杂系统涌现量化方法研究 被引量:7

Emergence Quantitative Analysis of Complex Adaptive Systems Based on Shannon's Information Entropy
下载PDF
导出
摘要 涌现性是复杂系统中的重要内容,传统研究缺乏对其定量描述。针对这一现状,提出了一种涌现定量度量方法。首先,在深入分析熵与涌现关系的基础上提出了基于信息熵的涌现度量流程;其次,采用Parzen窗方法对涌现定量度量中关键问题参数熵进行求解,并对如何应用到具体系统中进行了说明;最后,进行了仿真实验。结果证明该方法有效可行。 Emergence is an important content of Complex systems, but traditional research on emergence lacks quantitative description. Aiming at this problem, this paper proposes an emergence quantitative measurement method. Firstly, a process of emergence quantitative measurement is proposed based on in-depth analysis of the relationship of entropy and emergence; secondly, this paper uses Parzen window to find the emergence quantitative measurement entropy parameters, and describes how to apply this solution to specific systems; finally, simulation experiments are given and the result shows that this method is feasible and efficacious.
出处 《信息工程大学学报》 2014年第3期270-274,共5页 Journal of Information Engineering University
关键词 涌现 复杂系统 定量度量 Parzen窗口 emergence complex system quantitative measurement entropy Parzen window
  • 相关文献

参考文献14

  • 1苗东升.复杂性研究的成就与困惑[J].系统科学学报,2009,17(1):1-5. 被引量:14
  • 2Alexandra Brintrup,Tao Gong, Andreas Ligtvoet, Chris Davis. Distributed Control of Emergence: Local and Global Anti-Com- ponent Strategies in Particle Swarms and Ant Colonies[ C ]//2009 Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems. 2009:216-222.
  • 3Coming, Peter A. The Re-Emergence of "Emergence" : A Venerable Concept in Search of a Theory [ J]. Complexity,2002, 7(6) :18-30.
  • 4Mikhail Prokopenko, Fabio Boschetti, Alex J. An Information Theoretic Primer On Complexity, Self-Organisation And Emer- gence [ C ]//Proc. The 8th Understanding Complex Systems Conference. 2007 : 1-24.
  • 5Gabbai J M E, Yin H, Wright W A, Allinson N M. Self-organization, emergence and muhi-agent systems[ C ]//Proceedings of the International Conference on Neural Networks and Brain. 2005:1558-1863.
  • 6De Wolf T, Samaey G, Holvoet T, Roose D. Decentralized autonomic computing: Analysing self-organising emergent behavior using advanced numerical methods [ C ]//Second International Conference on Autonomic Computing (ICAC 2005 ). 2005: 52-63.
  • 7Holzer R,Meer De, Bettstetter C. On autonomy and emergence in Self-Organizing Systems[ C ]//Proceedings of the Third In- ternational Workshop. 2008:215-228.
  • 8Mnif M, M uller-Schloer M. Quantitative emergence[ C]//Proceedings of the IEEE Mountain Workshop on Adaptive and Learning Systems ( SMCals/06 ). 2006:78-84.
  • 9金士尧,黄红兵,任传俊.基于复杂性科学基本概念的MAS涌现性量化研究[J].计算机学报,2009,32(1):17-29. 被引量:12
  • 10Bishop C M. Pattern Recognition and Machine Learning[ M]. New York: Springer, 2006.

二级参考文献85

  • 1史美林,钱俊,许超.入侵检测系统数据集评测研究[J].计算机科学,2006,33(8):1-8. 被引量:24
  • 2伊·普利高津.从混沌到有序[M].上海译文出版社,1987,2:341-349
  • 3成思为.复杂科学与管理[R].第112次香山科学会议报告(1993).
  • 4M·盖尔曼.夸克与美洲豹[M].杨建邺,李湘莲译.长沙:湖.南科学技术出版社,1997:23-25.
  • 5Bruce Edmonds. Syntactic measures of complexity [-Ph. D. dissertation]. University of Manchester, Manchester, UK, 1999
  • 6Prokopenko Mikhail, Bosehetti Fabio, Ryan Alex J. An information-theoretic primer on complexity, self-organisation and emergence. Advances in Complex Systems
  • 7Shalizi Cosma Rohilla. Methods and techniques of complex systems science: An overview//Deisboeck Thomas S, Kresh J Yasha eds. Complex Systems Science in Biomedicine. New York: Springer, 2006:33-114
  • 8Shalizi C. Causal architecture, complexity and self-organization in time series and cellular automata E Ph. D. dissertation]. University of Michigan, Ann Arbor, MI, 2001
  • 9Bennett Charles H. Dissipation, information, computational complexity and the definition of organization//David Pines eds. Emerging Syntheses in Science. New Mexico: Santa Fe Institute, 1985:215-234
  • 10Koppel M. Complexity, depth and sophistication. Complex Systems, 1987, 1:1087-1091

共引文献144

同被引文献76

引证文献7

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部