期刊文献+

面向多面体模型的非规则程序SIMD投机优化技术

SIMD Speculative Optimization for Irregular Program Based on Polyhedral Framework
下载PDF
导出
摘要 多面体模型具有规范化、健壮性、灵活性等特点,被认为是最有前途的编译优化技术之一,SIMD优化是重要应用领域之一。由于静态编译技术的限制,大量非规则循环无法建立多面体模型,例如复杂依赖关系,导致无法利用该模型实现SIMD循环优化与代码生成。文章通过分析、利用SIMD优化所需的程序运行剖面信息,将静态编译未知情况转化为已知情况,为多面体模型建立创造条件。SPEC2000和PolyBench的测试结果显示,通过本文提出的方法,可将适用多面体模型的非规则循环个数提高2.3倍,经过SIMD优化后,平均加速比提高了1.53倍。 Polyhedral models have characteristics of normalization, robustness and flexibility, but the limitations of static compilation technology make most of irregular loops fail to model polyhedral framework because of aliasing, non-affine expressions, etc. To eliminate these limitations this paper applies the knowledge of the running profile information which is needed by SIMD Optimization . Evaluation on the SPEC2000 and PolyBench shows that the method is able to effectively increase the number of irregular loop which is amenable to polyhedral model by 2.3-fold, and average speed-up by 1.53-fold.
出处 《信息工程大学学报》 2014年第3期355-359,共5页 Journal of Information Engineering University
基金 国家科技重大专项资助项目(2009ZX01036-001-2)
关键词 SIMD 循环优化 多面体模型 投机优化 SIMD loop optimization polyhedral model speculative optimization
  • 相关文献

参考文献11

  • 1Girbal S, Vasilache N, Bastoul C, et al. Semi-automatic composition of loop transformations for deep parallelism and memory hierarchies [ J ]. International Journal of Parallel Programming, 2006, 34 (3) : 261-317.
  • 2Trifunovic K. Polyhedral-model guided loop-nest auto-vectorization [ C ]//Parallel Architectures and Compilation Techniques, 18th International Conference on. 2009: 327-337.
  • 3Vasilache N, Meister B, Baskaran M, et al. Joint scheduling and layout optimization to enable multi-level vectorization[ C]// Second Int. Workshop on Polyhedral Compilation Techniques (IMPACT 2012). 2012: 9-12.
  • 4Feld D, Soddemann T, Junger M, et al. Facilitate SIMD-Code-Generation in the Polyhedral Model by Hardware-aware Auto- matic Code-Transformation [ C ]//IMPACT 2013. 2013 : 45-65.
  • 5Bondhugula U, Baskaran M, Krishnamoorthy S, et al. Automatic transformations for commu-nication minimized parallelization and locality optimization in the polyhedral model[ C]//Compiler Construction. 2008: 132-146.
  • 6Grosser T, Zheng H, Aloor R, et al. Polly-Polyhedral optimization in LLVM [ C ]//Proceedings of the First International Workshop on Polyhedral Compilation Techniques (IMPACT). 2011:219-264.
  • 7Grosser T. Enabling polyhedral optimizations in llvm[ D ]. Master' s thesis, University of Passau, 2011.
  • 8Simburger A, Apel S, Grosslinger A, et al. The potential of polyhedral optimization: An empirical study [ C ]//Automated Software Engineering (ASE), 2013 IEEE/ACM 28th International Conference on. 2013: 508-518.
  • 9Baghdadi R, Cohen A, Bastoul C, et al. The potential of synergistic static, dynamic and speculative loop nest optimizations for automatic parallelization[ C ]// Workshop on Parallel Execution of Sequential Programs on Multi-core Architecture. 2010: 56-78.
  • 10Bastoul C, Cohen A, Girbal S, et al. Putting polyhedral loop transformations to work[ C ]//Languages and Compilers for Par- allel Computing. 2004: 209-225.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部