期刊文献+

基于QPSO的雷达辐射源信号识别方法研究

Study of signal recognition of radar emitter based on QPSO
下载PDF
导出
摘要 鉴于支持向量机(SVM)方法对雷达辐射源信号具有较理想的识别结果,但对模型参数没有具体选择方法的问题,设计了一种以具有量子行为的粒子群优化(QPSO)算法为参数优化方法的SVM分类器,并提出了基于QPSO-SVM的雷达辐射源信号识别方法.QPSO-SVM分类器在采用QPSO算法对SVM进行优化改进的同时,继承了SVM分类器泛化能力强的特点,对雷达辐射源信号识别问题具有良好的适应性.实验结果表明,与其他方法相比,本文方法在保证识别准确率的同时,降低了参数选择时间. Considering that the SVM algorithm has an ideal recognition result for radar emitter signals, but no specific selection method for the model parameters, this paper designs an SVM classifier that uses QPSO algorithm as the optimization algorithm of parameters, and proposes a scheme of signal recognition of radar emitter based on QPSO-SVM. While the QPSO-SVM classifier optimizes and improves SVM using the QPSO algorithm, the proposed classifier keeps the strong generalization capability of SVM classifier, thus having the better adaptability for the signal recognition of radar emitter. Experimental results show that this proposed method can shorten the time for parameter selection while guaranteeing the accuracy rate of recognition, compared with other algorithms.
机构地区 空军预警学院 [
出处 《空军预警学院学报》 2014年第3期161-164,共4页 Journal of Air Force Early Warning Academy
关键词 辐射源识别 支持向量机 量子粒子群算法 radar emitter recognition support vector machine (SVM) quantum particle swarm optimization(QPSO) algorithm
  • 相关文献

参考文献4

二级参考文献34

  • 1张国柱,周一宇,姜文利.基于贝叶斯理论的辐射源分类识别方法研究[J].信号处理,2004,20(4):350-352. 被引量:2
  • 2邵信光,杨慧中,石晨曦.ε不敏感支持向量回归在化工数据建模中的应用[J].东南大学学报(自然科学版),2004,34(B11):215-218. 被引量:6
  • 3李茂宽,关键.基于模糊C均值的支持向量机数据分类识别[J].系统仿真学报,2005,17(7):1785-1787. 被引量:8
  • 4G X Zhang, Weidong Jin,Laizhao Hu.Radar emitter signal recognition based on support vector machines [C]//Proc. 2004 8th International Conference on Control, Automation, Robotics and Vision (0-7803-8653-1), Kunming, China. USA: IEEE Press, 2004:826-831.
  • 5边肇基,张学工.模式识别[M].第2版.北京:清华大学出版社,2000
  • 6S Qian, D Chen. Joint Time-Frequency Analysis: Methods and Applications [M]. Upper Saddle River, NJ, USA: Prentice-Hall, 1996.
  • 7Zahir M, B Boashash. Adaptive instantaneous frequency estimation of multicomponent FM signals using quadratic time-frequency distribution [J]. IEEE Trans. Signal Processing (S1053-587X), 2002, 50(8): 1866-1876.
  • 8V Vpanik. The Nature of Statistical Learning Theory [M]. NY, USA: Springer Verlag, 1995.
  • 9L J Cao, W K Chong. Feature extraction in support vector machine: A comparison of PCA, KPCA and ICA [C]// Proc. 9th ICONIP'02 (981-04-7524-1), 2002, 2: 1001-1005.
  • 10Hu B Q, Yang J, He J L. A multiclassification model based on FSVMs [C]// Proceedings of NAFIPS 2005 Annual Meeting of the North America (0-7803-9187-X), 2005: 205-209,

共引文献159

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部