期刊文献+

属性分布相似度吸引子传播聚类算法研究

A properties distribution similarity-based affinity propagation algorithm
下载PDF
导出
摘要 传统吸引子传播聚类算法对数据类型敏感,文中提出一种改进的吸引子传播聚类算法,将JACCARD系数引入对象间属性分布相似度,并与吸引子传播聚类算法结合。仿真实验结果表明,该算法收敛速度快,聚类精度高,明显提高高维稀疏数据的聚类性能。 The traditional affinity propagation algorithm is sensitive to the type of data. Here we propose an improved affinity propagation algorithm which is based on property distribution similarity. JACCARD is introduced into property distribution similarity, and combined with affinity propagation clustering algorithm. Simulation results show that the method is with high precision and fast convergence, and can improve the clustering properties of high-dimensional sparse data.
出处 《长春工业大学学报》 CAS 2014年第3期271-274,共4页 Journal of Changchun University of Technology
基金 国家自然科学基金资助项目(61202306) 吉林省科技厅基金资助项目(20100507 201215119 20130522177JH) 吉林省教育厅重点规划项目(2012185) 吉林省高校新世纪优秀人才支持计划项目(2014159) 吉林财经大学青年学俊支持计划项目
关键词 吸引子传播聚类算法 JACCARD系数 属性分布相似度 affinity propagation; JACCARD; properties distribution similarity.
  • 相关文献

参考文献9

二级参考文献92

共引文献66

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部