期刊文献+

不同规模医疗机构开放云服务模型及效益评估 被引量:1

Open Cloud Service Models and Financial Assessment for Large and Community Hospitals
下载PDF
导出
摘要 随着云计算技术的发展,人们可以随时随地访问各种托管在云中的数据资源,基于云技术的医疗云解决方案应运而生。提出面向不同规模医疗机构的公共云医疗信息平台典型方案,并采用华为开放云服务价格评估平台对不同规模医院的数据服务进行经济成本评估,从而就不同规模医疗机构给出了可行的云服务解决方案。 With the rapid development of cloud computing,people can obtain data and services in the cloud service freely.As a result,cloud technology-based clinical solution becomes a possibility.To provide the cloud solutions for hospitals,this article suggests a public cloud clinical information platform plan for large and community hospitals and uses the Huawei cloud pricing platform to conduct financial assessments for data service of large and community hospitals.
作者 魏明 贾亮
出处 《淮海工学院学报(人文社会科学版)》 2014年第5期84-87,共4页 Journal of Huaihai Institute of Technology(Humanities & Social Sciences Edition)
基金 连云港市科技攻关项目(13aa114010)
关键词 开放云 医疗服务 解决方案 效益经济 open cloud clinical service solution benefit economy
  • 相关文献

参考文献10

  • 1HE Z Y,XU X F,DENG S C. Squeezer:an efficient algorithm for clustering categorical data[J].Journal of Computer Science and Technology,2002,(05):611-624.
  • 2MA C K,CHAN C K. Maximum descent method for image vector quantization[J].Electronics Letters,1991,(12):1772-1773.
  • 3BREUNIG M M,KRIEGEL H,SANDERJ. LOF:Iden-tifying Density-based Local Outliers[A].Dallas:ACM Press,2000.
  • 4JOHNSON T,KWOK I. Fast computation of 2-dimen-sional depth contours[A].New York:ACM Press,1998.
  • 5LINDE Y,BUZO A,GRAY R M. An algorithm for vector quantizer design[J].IEEE Transactions on Communications,1980,(01):702-710.
  • 6KNORR E M. Algorithms for Mining Distance-Based Outliers in Large Datasets[A].New York:NY,1998.
  • 7TAMHANE A C. A note on the use of residuals for detecting an outlier in linear regression[J].Biometri-ka,1982,(02):488-489.
  • 8YU D,SHEIKHOLESLAMI G,ZHANG A. Findout:Find-ing outliers in very large datasets[EB/OL].http://www.springerlink.com/...x/NTM59P9DB1AADH03.pdf-2002-9-1,2014.
  • 9HAWKINS D. Identification of Outliers[M].London:Chapman and Hall,1980.
  • 10何增有,徐晓飞,邓胜春.Squeezer:An Efficient Algorithm for Clustering Categorical Data[J].Journal of Computer Science & Technology,2002,17(5):611-624. 被引量:32

二级参考文献17

  • 1Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. ROCK: A robust clustering algorithm for categorical attributes. In Proc. 1999 Int. Conf. Data Engineering, Sydney, Australia, Mar., 1999, pp.512-521.
  • 2Alexandros Nanopoulos, Yannis Theodoridis, Yannis Manolopoulos. C2P: Clustering based on closest pairs. In Proc. 27th Int. Conf. Very Large Database, Rome, Italy, September, 2001, pp.331-340.
  • 3Ester M, Kriegel H P, Sander J, Xu X. A density-based algorithm for discovering clusters in large spatial databases.In Proc. 1996 Int. Conf. Knowledge Discovery and Data Mining (KDD'96), Portland, Oregon, USA, Aug., 1996,pp.226-231.
  • 4Zhang T, Ramakrishnan R, Livny M. BIRTH: An efficient data clustering method for very large databases. In Proc.the ACM-SIGMOD Int. Conf. Management of Data, Montreal, Quebec, Canada, June, 1996, pp.103-114.
  • 5Sudipto Guha, Rajeev Rastogi, Kyuseok Shim. CURE: A clustering algorithm for large databases. In Proc. the ACM SIGMOD Int. Conf. Management of Data, Seattle, Washington, USA, June, 1998, pp.73-84.
  • 6Karypis G, Han E-H, Kumar V. CHAMELEON: A hierarchical clustering algorithm using dynamic modeling. IEEE Computer, 1999, 32(8): 68-75.
  • 7Sheikholeslami G, chatterjee S, Zhang A. WaveCluster: A multi-resolution clustering approach for very large spatial databases. In Proc. 1998 Int. Conf. Very Large Databases, New York, August, 1998, pp.428-439.
  • 8Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. In Proc. the 1998 ACM SIGMOD Int. Conf. Management of Data, Seattle, Washington,USA, June, 1998, pp.94-105.
  • 9Jiang M FI Tseng S S, Su C M. Two-phase clustering process for outliers detection. Pattern Recognition Letters,2001, 22(6/7): 691-700.
  • 10Venkatesh Ganti, Johannes Gehrke, Raghu Ramakrishnan. CACTUS-clustering categorical data using summaries.In Proc. 1999 Int. Conf. Knowledge Discovery and Data Mining, August, 1999, pp.73-83.

共引文献31

同被引文献7

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部