期刊文献+

基于社区时空主题模型的微博社区发现方法 被引量:10

Microblog Community Detection Method based on Community Spatio-Temporal Topic Model
下载PDF
导出
摘要 提出了一种基于主题模型的微博社区发现方法。该方法采用狄利克雷过程(Dirichlet process)自适应生成多个潜在地理区域;利用多项式分布描述主题在连续时间中的强度;将用户对潜在地理区域和社区的选择偏好引入主题模型;最后通过EM方法和Gibbs采样,实现时空主题模型参数估算,以基于主题相似性进行社区发现。实验表明,该方法能更加准确地识别微博社区。 This paper presents a novel micro-community detection method based on topic model. Multiple latent geographical regions by Dirichlet process are created adaptively. A multinomial distribution is then employed to depict topics evolutions within each time bin. User selection preferences of latent geographical region and community are introduced in topic model. Finally, the EM method and Gibbs sampling method are used to estimate spatio-temporal topic model parameters so that community detection can be realized by topics similarity. Experiment results show that this method can promote the performances of community identifying.
作者 段炼 朱欣焰
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2014年第3期464-469,共6页 Journal of University of Electronic Science and Technology of China
基金 国家863计划(2013AA12A203) 国家自然科学基金(41361022)
关键词 狄利克雷过程 地理标识微博 微博社区发现 微博主题挖掘 时空主题模型 Dirichlet process geo-tagged microblog microblog community detection microblog topic mining spatio-temporal topic model
  • 相关文献

参考文献12

  • 1WENG Jian-shu, LIM E P, JIANG .ling, et al. Twitter rank: finding topic-sensitive in fluential twitterers[C]//Proc of the 3rd ACM International Conference on Web Search and Data Mining. New York: ACM, 2010.
  • 2BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(1): 993-1022.
  • 3闫光辉,舒昕,马志程,李祥.基于主题和链接分析的微博社区发现算法[J].计算机应用研究,2013,30(7):1953-1957. 被引量:28
  • 4YIN Zhi-jun, CAO Liang-liang, GU Quan-quan, et al. Latent community topic analysis: integration of community discovery with topic modeling[J]. ACM Transactions on Intelligent Systems and Technology, 2012, 3(4): 63-84.
  • 5LI Dai-feng, DING Ying, SHUAI Xin, et al. Adding community and dynamic to topic models[J]. Journal of Informetrics, 2012, 6(2): 237-253.
  • 6YIN Zhi-jun, CAO Liang-liang, HAN Jia-wei, et al. Geographical topic discovery and compadson[C]//The 20th international conference on World Wide Web(WWW). New York, USA: [s.n.], 2011.
  • 7EISENSTEIN J, O'Connor B, SMITH N A, et al. A latent variable model for geographic lexical variation[C]//The 20th Conference on Empirical Methods in Natural Language Processing. MIT, Massachusetts, USA: Association for Computational Linguistics, 2010.
  • 8SIZOV S. GeoFolk. Latent spatial semantics in web 2.0 social media[C]//The 3rd International Conference on Web Search and Data Mining(WSDM). New York, USA: ACM, 2010.
  • 9MEI Qiao-zhu, Liu Chao, SU Hang. A probabilistic approach to spatiotemporal theme pattern mining on weblogs[C]//The 15th international conference on World Wide Web(WWW). Edinburgh, Scotland: ACM, 2006.
  • 10GRIFFITHS T L, STEYVERS M. Finding scientific topics[C]//Proceedings of the National Academy of Sciences (NAS), USA: [s.n.], 2004.

二级参考文献19

  • 1KOUDAS B N. Searching the blogosphere[A].2007.
  • 2KWAK H. What is Twitter,a social network or a news media[A].[S.l.]:ACM Press,2010.
  • 3STUTZMAN F. An evaluation of identity-sharing behavior in social network communities[J].International Digital and Media Arts Journal,2006,(01):10-18.
  • 4KLEINBERG J M. Authoritative sources in a hyperlinked environment[J].Journal of the ACM,1999,(05):604-632.doi:10.1145/324133.324140.
  • 5BRIN S,PAGE L. The anatomy of a large-scale hypertextual Web search engine[A].1998.107-117.
  • 6GRIVAN M,NEWMAN M E J. Community structure in social and biological networks[A].2002.7821-7826.
  • 7BLEI D M,NG A Y,JORDAN M I. Latent Dirichlet allocation[J].The Journal of Machine Learning Research,2003,(01):993-1022.
  • 8LI Xin,GUO Lei,ZHAO Ye. Tag-based social interest discovery[A].2008.675-684.
  • 9LIN Yu-ru,SUNDARAM H,CHI Yun. Discovery of blog communities based on mutal awareness[A].2006.
  • 10WENG Jian-shu,LIM E P,JIANG Jing. Twitter Rank:finding topic-sensitive influential twitterers[A].New York:acm Press,2010.261-270.

共引文献27

同被引文献132

  • 1宋明秋,张瑞雪.基于HTML树的网页结构相似度研究[J].情报学报,2011,30(2):160-165. 被引量:2
  • 2Berlingerio M,Pinelli F,Calabrese F. ABACUS: frequent pattern mining-based Community discovery in multidimensional networks [ J ]. Data Mining and Knowledge Discovery,2013,27 ( 3 ) :294-320.
  • 3Kwok J S H, Gao S. Knowledge sharing community in P2P network: a study of motivational perspective [ J]. Journal of Knowledge Management, 2004,8 ( 1 ) : 94-102.
  • 4White S, Smyth P. A spectral clustering approach to finding communities in graphs [ C ]//Proceedings of the 5th SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics: Philadelphia,2005 : 76 -84.
  • 5Belkin M, Niyogi P, Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering [ M ]//Thomas G. Dietterich Advances in Neural Information Processing Systems,Combridge, 2001:585-591.
  • 6Girvan M, Newman M E J. Community structure in social and biological networks [ C ]//Proceedings of National Academy of Science. National Academy of Sciences of the United States of America , USA. 2002, 9 (12): 7921-7826.
  • 7Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69 (6) :066-133.
  • 8Palla G,Derenyi I,Farkas I, et al. Uncovering the over- lapping community structures of complex networks in nature and society [ J ]. Nature, 2005, 435 ( 7043 ) : 814-818.
  • 9Shen H W,Cheng X Q,Cai K, et al. Detect overlapping and hierarchical community structure in networks [ J ]. Physica A, 2009, 388(8) : 1706-1712.
  • 10Ramaswamy L,Gedik B, Liu L. A distributed approach to node clustering in decentralized peer-to-peer networks [ J ]. IEEE Transactions on Parallel and Distributed Systems, 2005, 16(9) : 814-829.

引证文献10

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部