期刊文献+

基于BADA及航空器意图的四维航迹预测 被引量:39

4D Trajectory Prediction Based on BADA and Aircraft Intent
下载PDF
导出
摘要 为了提高航空器四维轨迹预测的准确性,提出了基于航空器性能数据以及航空器意图的四维航迹预测方法.通过统计分析航空器实际雷达轨迹数据,根据水平轨迹、高度和速度剖面等构建了航空器意图模型.采用航空器意图模型与航空器动力与运动学模型相结合的方法,考虑气象因素,基于性能数据设计了四维航迹预测模型.以国内某机场进场航班ACA025与CES2161为例进行了模拟,将预计到达时刻与实际到达时刻的误差作为评价指标,结果表明:本文提出的算法可以将通过航路点时刻的误差控制在30 s以内. In order to improve the trajectory prediction accuracy, a new four-dimensional aircraft trajectory prediction approach was presented, which was based on aircraft performance data and aircraft intent. Firstly, through statistical analysis of historical radar data about aircraft trajectories, an aircraft intent model was constructed from the perspective of horizontal trajectory, altitude, and velocity profile. Then the four-dimensional trajectory prediction model was built based on the aircraft intent model in combination with aircraft's kinetic and kinematic models, taking into account the aircraft performance data and meteorological data. Finally, taking arrival flights ACA025 and CES2161 to a domestic airport as examples, a simulation was conducted, in which the error between expected and actual time-of-arrival was chosen as the evaluation criteria. The simulation results show that the proposed trajectory prediction approach can control the error between expected and actual time-ofarrival within 30 s with respect to every passing waypoints.
出处 《西南交通大学学报》 EI CSCD 北大核心 2014年第3期553-558,共6页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(61174180) 江苏省自然科学基金资助项目(BK20130814) 中央高校基本科研业务费专项资金资助项目(NS2013064 ZXH2012L004)
关键词 航迹预测 航空器意图 全能量方程 空中交通管制 trajectory prediction aircraft intent total energy equation air traffic control
  • 相关文献

参考文献16

  • 1RUIZ S, PIERA M, POZO I. A medium term conflict detection and resolution system for terminal maneuvering area based on spatial data and 4D trajectories[J]. Transportation Research: Part C, 2013, 26 : 396-417.
  • 2HANCERLIOGULLARI G, RABADI G, AL-SALEM A H, et al. Greedy algorithms and metaheuristics for a multiple runway combined arrival-departure aircraft sequencing problem[J]. Journal of Air Transport Management, 2013, 32: 39-48.
  • 3ZuNIGA C A, PIERA M A, RUIZ S. A CD&CR causal model based on path shortening/path stretching techniques[ J ]. Transportation Research : Part C, 2013, 33: 238-256.
  • 4SCHROEDER J A. A perspective on NASA Ames air traffic management research[ C ] // 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO). [S.l. ] : AIAA, 2009: 7054-1-7054-16.
  • 5BAR-SHALOM Y, LI X R. Estimation with applications to tracking and navigation: theory algorithms and software[ M]. [ S. l. ] : John Wiley Sons, Inc., 2001 : 466-476.
  • 6HWANG I. Air traffic surveillance and control using hybrid estimation and protocol-based conflict resolution [ D ]. Stanford : Stanford University, 2003.
  • 7陈映,程臻,文树梁.适用于模型失配时的改进IMM算法[J].系统工程与电子技术,2011,33(12):2593-2597. 被引量:13
  • 8SEAH C E, HWANG I. State estimation for stochastic linear hybrid systems with continuous-state-dependent transitions: an IMM approach[J]. IEEE Transactions on Aerospace and Electronics Systems, 2009, 45 ( 1 ) : 376-392.
  • 9SEAH C E, HWANG I. Algorithm for performance analysis of the IMM algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47 ( 2 ) : 1114-1124.
  • 10FUKUDA Y, SHIRAKAWA M, SENOGUCHI A. Development of trajectory prediction model [ C ]//ENRI International Workshop on ATM/CNS (EIWAC). Tokyo: [s. n. ], 2010: 95-100.

二级参考文献23

  • 1肖靖,孙涛.新一代民用航空运输系统需要更加灵活高效的空中交通管理系统[J].空中交通管理,2006(1):7-10. 被引量:3
  • 2王大海.末端区域4D导引的水平轨迹计算方法[J].飞行力学,1996,14(3):27-33. 被引量:7
  • 3SLATTERY R A. Terminal area trajectory synthesis for air traffic control automation [ C ]// Proceedings of the American Control Conference. Seattle : IEEE Computer Society Press, 1995 : 1206-1210.
  • 4SLATTERY R, ZHAO Y. Trajectory synthesis for air traffic automation [ J ]. Journal of Guidance, Control, and Dynamics [J]. 1997, 20(2): 232-238.
  • 5BOLENDER M A, SLATER G L. Departure trajectory synthesis and the intercept problem[ C ] //AIAA Guidance Navigation and Control Conference. New Orleans: National Aeronautics and Space Administration, 1997: 444-454.
  • 6Eurocontrol Experimental Centre. User manual for the base of aircraft data (BADA) revision 3.6 [ OL/DB ]. http ://www. eurocontrol. int/eec/public/standard_page/ACE_bada_documents_36. html. 2008-12-15.
  • 7Shalom Y B. Tracking and data association[M]. Orlando:Academic Press, 1988 : 123 - 148.
  • 8Blom H A P, Shalom Y B. The interacting multiple model algorithm for systems with Marko switching coefficients [J]. IEEETrans. onAC,1988,33(8):780-783.
  • 9Mahendra M, La Scala B F. IMM estimator for ground target tracking with variable measurement sampling intervals [C]// Proc. of the 9th International Conference on Information Fusion ,2006 : 1 - 8.
  • 10Zhang M, Knedlik S, Loffeld O. An adaptive road-constrained IMM estimator for ground target tracking in GSM networks[C]// Proc. of the 11th International Conference an In fbrrnatian Fusion ,2008 : 1 - 8.

共引文献89

同被引文献193

引证文献39

二级引证文献160

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部