期刊文献+

高效澄清萃取槽内搅拌对液液分离特性的影响 被引量:8

Effect of Stirring on Liquid-Liquid Separation in Modified Mixer-Settlers
下载PDF
导出
摘要 针对传统稀土萃取混合澄清槽存在的问题,提出了在澄清室增加搅拌装置以提高澄清效率的方法。通过对四斜叶搅拌桨、Intermig桨及框式搅拌桨等不同桨型搅拌对澄清度影响的研究,证实四斜叶桨是合适的桨型,经搅拌之后,澄清室两相分离效果明显优于传统混合澄清槽,澄清度平均提高30%以上。在转速20,30,40和50 r·min-1条件下,搅拌桨离底距离分别为4.0,5.5,7.0,8.5和10.0 cm,搅拌桨距溢流口距离分别为10,13和16 cm时,对四斜叶桨搅拌澄清度的研究结果表明,低转速下澄清效果更好,搅拌桨距离溢流口越近澄清效果越好,而搅拌桨离底距离8.5cm,即处于两相混合带附近时澄清效果最佳。在此基础上,根据因次分析原理和试验数据建立了澄清度因次公式。 Addition of agitation device to mixer-settlers was proposed in order to improve separation efficiency. A four-pitched-blade turbine, an Intermig impeller and a frame impeller were selected. Experimental conditions were: rotation speed:20, 30, 40 and 50 r·min-1, impeller to bottom distance: 4.0, 5.5, 7.0, 8.5 and 10.0 cm and the distance from paddle to overflow port: 10, 13 and 16 cm. The results show that the pitched blade turbine is applicable and the two-phase separation process is better in the settlers with agitation than in traditional mixer-settlers without agitation. The results show that the separation efficiency is better when the rotation speed is lower and the distance from paddle to overflow port is narrower. When the impeller to bottom distance is 8.5 cm, the separation efficiency is the best. A principle theory formula in the range of the experimental condition is established. The theoretical values have a good agreement with the experimental values.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2014年第3期530-534,共5页 Journal of Chemical Engineering of Chinese Universities
基金 国家高技术研究发展计划项目(2010AA03A405) 国家自然科学基金项目(51204040,51004033) 中央高校基本科研业务费项目(N130702001)
关键词 混合澄清槽 萃取 搅拌 液液分离 因次分析 mixer-settlers extraction agitation liquid-liquid separation dimensional analysis
  • 相关文献

参考文献14

  • 1XU Guang-xian(徐光宪).Rare earth(Book 2)(稀土,下册)[M].2nd ed(第2版).Beijing(北京):Metallurgical Industry Press(冶金工业出版社),1995:286.
  • 2郭建光,李忠,奚红霞,何莼,王伯光.CeO_2掺杂对CuO/沸石催化剂催化氧化VOCs活性的影响[J].高校化学工程学报,2005,19(6):776-780. 被引量:19
  • 3陈献,乔旭,汤吉海,崔咪芬.稀土-Cu-K/Y分子筛催化剂的制备与性能研究[J].高校化学工程学报,2008,22(1):118-121. 被引量:15
  • 4LI Zhou(李洲),FEI Wei-yang(费维扬),YANG Ji-chu(杨基础).Liquid-liquid extraction process and equipment(Vol. 2)(液-液萃取过程和设备,下册)[M].Beijing(北京):Atomic Anergy Press(原子能出版社),1985:21.
  • 5Giraldo-Zuniga A D, Coimbra J S R, Minim LA, et al. Axial mixing in a graesser liquid - liquid contactor using aqueous two-phase systems [J].Chem Eng Process. 2005, 44(4): 441-446.
  • 6Giraldo-Zuniga A D, Coimbra J S R, Minim LA, et al. Dispersed phase hold-up in a graesser raining bucket contactor using aqueous two-phase systems [J]. Journal Food Engineer, 2006, 72(3): 302-309.
  • 7Saien J, Zonouzian S A E, Dehkordi A M. Investigation of a two impinging-jets contacting device for liquid - liquid extraction processes [J]. Chem Eng Sci, 2006, 61(12): 3942-3950.
  • 8Godfrey J C, Slater M J. Liquid-liquid extraction equipment [M]. South Bend: Bradford Press, 1994: 11.
  • 9Edith Espitia-Saloma, Patricia Vazquez-Villegasl, Oscar Aguilar, et al. Review continuous aqueous two-phase systems devices for therecovery of biological products [J].Food and Bioproducts Processing, 2014,92(2): 101-112.
  • 10Padilla R, Ruiz M C, Trujillo W. Separation of liquid-liquid dispersions in a deep-layer gravity settler: Part I Experimental study of the separation process [J]. Hydrometallurgy, 1996,42(2): 267-279.

二级参考文献45

共引文献34

同被引文献46

  • 1王乐勤,杜红霞,吴大转,戴维平.多层桨式搅拌罐内混合过程的数值模拟[J].工程热物理学报,2007,28(3):418-420. 被引量:33
  • 2Lade V C~ Rathod V K, Bhattacharyya S, et al. Comparison of normal phase operation and phase reversal studies in a pulsed sieve plate extraction column [J]. Chemical Engineering Research & Design, 2013, 91 (6): 1133-1144.
  • 3Bahmanyar H, Nazari L, Sadr A. Prediction of effective diffusivity and using of it in designing pulsed sieve plate extraction columns [J]. Chemical Engineering & Processing, 2008, 47(1): 57-65.
  • 4Hlawitschka M W, Bart H J. Determination of local velocity, energy dissipation and phase fraction with LIF- and PIV-measurement in a Kfihni miniplant extraction column [J]. Chemical Engineering Science, 2012, 69(1): 138-145.
  • 5Stella A, Mensforth K H, Bowser T, et al. Mass transfer performance in karr reciprocating plate extraction columns [J]. Industrial & Engineering Chemistry Research, 2008, 47(11): 3996-4007.
  • 6Noh S. H, Baird M H I. Mass transfer and pressure drop in a cocurrent reciprocating plate extraction column [J]. AIChE Journal, 1984, 30(1): 120-127.
  • 7Shen Z J, Rama Rao N V, Baird M H 1. Mass transfer in a reciprocating plate extraction column-effects of mass transfer direction and plate material [J]. Canadian Journal of Chemical Engineering, 1985, 63(1): 29-36.
  • 8Camurdan M C, Baird M H I, Taylor P A. Steady state hydrodynamics and mass transfer characteristics of a karr extraction column [J]. Canadian Journal of Chemical Engineering, 1989, 67(4): 554-559.
  • 9Stella A, Pratt H R C, Mensforth K H, et al. Backmixing in karr reciprocating-plate extraction columns [J]. Industrial & Engineering Chemistry Research, 2006, 45(19): 6555-6562.
  • 10Gomes L N, Guimaraes M L, Regueiras P F R, et al. Simulated and experimental dispersed-phase breakage and coalescence behavior in a kfihni liquid-liquid extraction column-steady state [J]. Industrial & Engineering Chemistry Research, 2006, 45(11): 3955-3968.

引证文献8

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部