期刊文献+

可分离的二次背包问题的一种直接算法

Direct algorithm of separable quadratic knapsack problem
下载PDF
导出
摘要 研究了可分离二次背包问题的一种直接算法.此类背包问题的目标函数是二次的,且含有严格的一次项,其不等式约束是线性的.给出所求模型的一般形式,经过预处理该模型,最终归为求解两类问题(P_1)和(P_2).重点是求解(P_2)问题的最优解,通过分析(P_2)问题的结构特点,假设固定一次项后问题的最优解和相应不等式的拉格朗日乘子已求出,通过比较拉格朗日乘子和(P_2)问题的一次项系数来调节λ的大小,从而求出(P_2)问题的最优解.对于(P_1)问题,改进了Bretthauer和Shetty给出的算法(Bretthauer K M,Shetty B.A pegging algorithm for the nonlinear resource allocation problem.Computers and Operations Research,2002,29(5):505-527).此算法的计算复杂性为O(n).数值算例表明,将这种固定变量算法和文中的定理5结合起来,能够快速有效地求解此类更一般的二次背包问题. A direct algorithm of the separable quadratic knapsack problem is presented. The quadratic knapsack problem whose objective function is quadratic and contains strict one-time items is defined on the linear inequality constraint. The general form of the model is given, and by pretreatment, this model ultimately can be converted into two types of problems (Pl) and (P2). By analyzing the structural features of the problem (P2) and comparing the corresponding Lagrange multiplier with the coefficient of the one-time items, the direct algorithm for solving (P2) is proposed. The optimal solution of the problem (P1)can be characterized on the same lines as described by Bretthauer and Shetty (Bretthauer K M, Shetty B. A pegging algorithm for the nonlinear resource allocation problem. Computers and Operations Research, 2002, 29(5): 505-527). The computational complexity of this algorithm is O (n). Numerical examples are presented to support the theory.
作者 陈娟娟 陈伟
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2014年第2期150-165,共16页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(11271128) 上海市重点学科建设资助项目(S30104)
关键词 可分离 二次背包问题 固定变量算法 separable quadratic knapsack problem pegging algorithm
  • 相关文献

参考文献17

  • 1Mathur K,Salkin H M,Morito S.A branch and search algorithm for a class of nonlinear knapsack problems[J].Operations Research Letters,1983,2(4):155-160.
  • 2Hax A C,Candea D.Production and Inventory Management[M].Englewood Cliffs,NJ:Prentice Hall College Division,1984.
  • 3Bretthauer K,Shetty B,Syam S,White S.A model for resource constrained production and inventory management[J].Decision Sciences,1994,25(4):561-557.
  • 4Cochran W G.Sampling Techniques[M].2nd ed.New York:Wiley,1963.
  • 5Bitran G R,Tirupati D.Tradeoff curves,targeting and balancing in manufacturing queueing networks[J].Operations Research,1989,37(4):547-564.
  • 6Gerla M,Kleinrock L.On the topological design of distributed computer networks[J].IEEE Transactions on Communications,1977,25(1):48-60.
  • 7Martello S,Toth P.Knapsack Problems:Algorithms and Computer Implementations[M].New York:John Wiley and Sons,Inc,1990.
  • 8Bretthauer K M,Shetty B.The nonlinear resource allocation problem[J].Operations Research,1995,43(4):670-683.
  • 9Kellever H,Pferschy U,Pisinger D.Knapsack Problems[M].Berlin:Springer-Verlag,2004.
  • 10Caprara A,Pisinger D,Toth P.Exact solution of the quadratic knapsack problem[J].INFORMS Journal on Computing,1999,11:125-137.

二级参考文献20

  • 1华中生,张斌.求解可分离连续凸二次背包问题的直接算法[J].系统工程与电子技术,2005,27(2):331-334. 被引量:7
  • 2MARKOWITZE H M.Porfolio selection:effcient diversification of investment[M].New York:Wiley,1959:129-188.
  • 3BERNHARD R H.Mathematical programming models for captial budgeting-a survey generalization and critique[J].Journals of Financial Quarterly Analysis,1969,4:111-158.
  • 4MODER J J,PHILIPS C R.Project management with CPM and PERT[M].New York:Rheinhold,1964:119-135.
  • 5KELLEVER H,PFERSCHY U,PISINGER D.Knapsack problems[M].Berlin:Springer-Verlag,2004:34-88.
  • 6RADERJI D J,WOEIGINER G J.The quadratic 0-1 knapsack problem with series parallel support[J].Operations Research Letters,2002,30(3):159-166.
  • 7CAPRARA A,PISINGER D,TOTH P.Exact solution of the quadratic knapsack problem[J].Informs Journal on Computing,1999,11:125-137.
  • 8BRETTHAUER K M,SHETTY B.The nonlinear knapsack problem-algorithms and applications[J].European Journal of Operation Research,2002,138(3):459-472.
  • 9BRETTHAUER K M,SHETTY B,SYAM S.A branch and bound algorithm for integer quadratic knapsack problems[J].ORSA Journal on Computing,1995,7(1):109-118.
  • 10PARDALS P M,KOVOOR N.An algorithm for a singly constained class of quadratic programs subject to upper and lower bounds[J].Mathematical Programming,1990,46:321-328.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部