期刊文献+

关于一类非多项式平面微分系统的极限环及分支问题(英文) 被引量:1

Limit cycle and bifurcation problem for a class of nonpolynomial planar differential systems
下载PDF
导出
摘要 旨在讨论一类非多项式平面微分系统.通过使用Dulac准则和Bendixson准则获得极限环不存在性的充分条件,引入广义Lienard系统理论以研究极限环的存在性及稳定性,应用Hopf分岔理论证明自原点分岔出极限环的充分条件.此外,给出一个范例以验证分析和结果的有效性. This paper aims to discuss a class of the nonpolynomial planar differ- ential systems. The Dulac criterion and the Bendixson criterion are used to obtain some sufficient conditions for the nonexistence of the limit cycle, and the theory of the generalized Lidnard system is introduced to investigate the existence and the stability of the limit cycle. The Hopf bifurcation theory is applied to prove some sufficient conditions for the bifurcating limit cycle from the origin. In addition, one typical example is given to verify the effectiveness of the analyses and results.
出处 《应用数学与计算数学学报》 2014年第2期189-199,共11页 Communication on Applied Mathematics and Computation
基金 Project supported by the Natural Science Foundation of Anhui Education Department(KJ2012A171) the 211 Project of Anhui University(KJTD002B) the Scientific Research of BSKY from Anhui Medical University(XJ201022) the Provincial Excellent Young Talents Foundation for Colleges and Universities of Anhui Province(2011SQRL126) the Academic Innovative Scientific Research Projects of the Postgraduates for Anhui University(yfc100020,yfc100028)
关键词 非多项式平面微分系统 广义LIÉNARD系统 极限环 Dulac准则 Bendixson准则 Hopf分岔理论 nonpolynomial planar differential system generalized Lienard systern limit cycle Dulac criterion Bendixson criterion Hopf bifurcation theory
  • 相关文献

参考文献3

二级参考文献8

  • 1Arrowsmith D K, Place C M. An Introduction to Dynamical Systems. Cambridge: Cambridge University Press, 1990.
  • 2Chavarriga J, Saez E, Szamto I, Grau M. Coexistence of limit cycles and invariant algebraic curves on a Kukles system. Nonlinear Analysis, 2004, 59(5): 673-693.
  • 3Takens F. Unfoldings of certain singularities of vector fields: Generalized Hopf bifurcations. Journal Differential Equations, 1973, 14:476-493.
  • 4Yang Xin'an. A survey of cubic systems. Annals of Differential Equations, 1991, 7(3): 323-363.
  • 5Stephen W. Mathematica Book. 4-th ed. Wolfram Research Inc, 1999.
  • 6Yulin Zhao. Zeros of abelian integrals for the reversible codimension four quadratic centersQ 3 r ∩Q 4[J] 2003,Israel Journal of Mathematics(1):125~143
  • 7Zhao Yulin,Li Weigu,Li Chengzhi,Zhang Zhifen. Linear estimate of the number of zeros of Abelian integrals for quadratic centers having almost all their orbits formed by cubics[J] 2002,Science in China Series A: Mathematics(8):964~974
  • 8V. I. Arnol’d. Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields[J] 1977,Functional Analysis and Its Applications(2):85~92

共引文献2

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部