期刊文献+

交错排列结构的多尺度渐近分析

Multiscale asymptotic analysis in staggered arrangement structure
下载PDF
导出
摘要 针对一类交错排列结构上的具有快速振荡系数的椭圆问题进行了多尺度渐近分析.证明了多尺度渐近展开方法的相关基础定理和多尺度解的误差估计.数值算例验证了所提出的多尺度有限元算法的有效性.进一步地,讨论了不同交错排列方式对材料等效性能的影响. The multiscale asymptotic behavior of a kind of elliptic problem with rapidly oscillating coefficients on structures with staggered arrangements made up of unit cell is analyzed. The corresponding fundamental theorems for the multiscale asymptotic expansion method are shown, and the multiscale error estimate is obtained. Numerical simulations are carried out to validate the proposed multiscale finite element method (FEM). Moreover, the different staggered arrangements on the effect equivalent performance of the materials is discussed.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2014年第2期200-214,共15页 Communication on Applied Mathematics and Computation
基金 上海市教育委员会重点学科建设资助项目(J50101) 上海大学研究生创新基金资助项目(SHUCX112005)
关键词 均匀化 多尺度渐近分析 交错排列结构 有限元法 homogenization multiscale asymptotic analysis staggered arrangement structure finite element method (FEM)
  • 相关文献

参考文献10

  • 1Bensoussan A,Lions J L,Papanicolaou G.Asymptotic Analysis for Periodic Structures[M].Amsterdam:North-Holland Publishing Company,1978.
  • 2Oleinik O A,Shamaev A S,Yosifian G A.Mathematical problems in elasticity and homogenization[M]//Lions J L,Papanicolaou G,Fujita H,Keller H B.Studies in Mathematics and Its Applications.Amsterdam:North-Holland Publishing Company,1992.
  • 3Cioranescu D,Donato P.An Introduction to Homogenization[M].New York:Oxford University Press,1999.
  • 4Hou T Y,Wu X H,Cai Z Q.Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients[J].Mathematics of Computation,1999,68(227):913-943.
  • 5Chen Z M,Hou T Y.A mixed multiscale finite element method for elliptic problems with oscillating coefficients[J].Mathematics of Computation,2003,72(242):541-576.
  • 6Weinan E,Ming P B,Zhang P W.Analysis of the heterogeneous multiscale method for elliptic homogenization problems[J].Journal of the American Mathematical Society,2005,18(1):121-156.
  • 7Ming P B,Zhang P W.Analysis of the heterogeneous multiscale mehtod for parabolic homogenization problems[J].Mathematics of Computation,2007,76(257):153-177.
  • 8Cao L Q,Cui J Z,Zhu D C.Multiscale asymptotic analysis and numerical simulation for the second order Helmholtz equations with rapidly oscillating coefficients over general domains[J].SIAM Journal on Numerical Analysis,2002,40(2):543-577.
  • 9Cao L Q.Multiscale asymptotic expansion and finite element methods for the mixed boundary value problems of second order elliptic equation in perforated domains[J].Numerische Mathematik,2006,103(1):11-45.
  • 10翟方曼,曹礼群.复合材料与结构热传导问题的多尺度模型与算法研究[D].北京:中国科学院数学与系统科学研究院, 2009.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部