摘要
针对一类交错排列结构上的具有快速振荡系数的椭圆问题进行了多尺度渐近分析.证明了多尺度渐近展开方法的相关基础定理和多尺度解的误差估计.数值算例验证了所提出的多尺度有限元算法的有效性.进一步地,讨论了不同交错排列方式对材料等效性能的影响.
The multiscale asymptotic behavior of a kind of elliptic problem with rapidly oscillating coefficients on structures with staggered arrangements made up of unit cell is analyzed. The corresponding fundamental theorems for the multiscale asymptotic expansion method are shown, and the multiscale error estimate is obtained. Numerical simulations are carried out to validate the proposed multiscale finite element method (FEM). Moreover, the different staggered arrangements on the effect equivalent performance of the materials is discussed.
出处
《应用数学与计算数学学报》
2014年第2期200-214,共15页
Communication on Applied Mathematics and Computation
基金
上海市教育委员会重点学科建设资助项目(J50101)
上海大学研究生创新基金资助项目(SHUCX112005)
关键词
均匀化
多尺度渐近分析
交错排列结构
有限元法
homogenization
multiscale asymptotic analysis
staggered arrangement structure
finite element method (FEM)