期刊文献+

基于提升小波的基因芯片数据的分类预测

Gene microarray data classification and prediction based on lifting wavelet
下载PDF
导出
摘要 针对肿瘤的早期诊断,提出了一种基于提升小波变换的特征提取的方法,对肿瘤数据样本进行分析鉴别.该方法利用提升小波变换对190例肝癌(包括对照)和107例肺癌(包括对照)基因表达谱芯片数据进行处理后,提取信号的低频信息,经支持向量机训练学习,构造分类器模型,用于癌和非癌样本的区分甄别.实验结果表明,经提升小波变换提取的特征基因,送入分类器中能得到较高的分类率,且在支持向量机中选取线性核函数或径向基函数都能达到较好的分类效果.通过随机选取的20例基因表改谱芯片样本,对所建立的模型进行了测试,获得了很好的效果,因此,本文提出的方法对肿瘤的诊断有一定的应用意义. For the problem of the early detection of cancer, a method of feature extraction based on the lifting wavelet is introduced to analyze and identify tumor samples. With this method, the 190 liver cancer gene expression profiles samples (including control group) and 107 lung gene expression profiles samples (including control group) are calculated by the lifting wavelet, and the low frequency information is extracted as features. These features then are learned by the support vector machine (SVM) to train a model for distinguishing the cancer and noncancer samples. Numerical results report that, the feature genes which extracted by the lifting wavelet transform can get a high classification rate after sending into the classifier. Results also indicate that both the linear kernel function and the radial basis function (RBF) selected as the kernel function in the SVM can reach an ideal classification effect. The model is tested with 20 gene expression profiles samples which are chosen at random, and it offers perfect performance. Therefore, the method presented in this paper has practical value for the diagnosis of tumors.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2014年第2期218-227,共10页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金资助项目(30971480)
关键词 提升小波 支持向量机 核函数 交叉验证 肝癌和肺癌基因芯片 lifting wavelet support vector machine (SVM) kernel function cross-validation liver cancer and lung cancer gene microarray
  • 相关文献

参考文献16

  • 1Baldi P,Long A D.A Bayesian framework for the analysis of microarray expression data:regularized t-test and statistical inferences of gene changes[J].Bioinformatics,2001,17(6):509-519.
  • 2Xiong M,Jin L,Li W,Boerwinkle E.Computational methods for gene expression-based tumor classification[J].Biotechniques,2000,29(6):1264-1270.
  • 3Liu Y.Cancer classification based on the "fingerprint" of microarray data[C]//Proceddings of the 1st IEEE International Conference on Bioinformatics and Biomedical Engineering,2007:176-179.
  • 4Golub T R,Slonim D K,Tamayo P,Huard C,Gaasenbeek M,Mesirov J P,Coller H,Loh M L,Downing J R,Caligiuri M A,Bloomfield C D,Lander E S.Molecular classification of cancer:class discovery and class prediction by gene expression monitoring[J].Science,1999,286(5439):531-537.
  • 5Huang D S,Zheng C H.Independent component analysis-based penalized discriminant method for tumor classification using gene expression data[J].Bioinformatics,2006,22(15):1855-1862.
  • 6秦传东,刘三阳,张市芳.一种肿瘤基因的支持向量机提取方法[J].西安电子科技大学学报,2012,39(1):191-196. 被引量:4
  • 7Sweldens W.The lifting scheme:a construction of second generation wavelets[J].SIAM Journal on Mathematical Analysis,1998,29(2):511-546.
  • 8Sweldens W.The lifting scheme:a custom-design construction of biorthogonal wavelets[J].Applied and Computational Harmonic Analysis,1996,3:186-200.
  • 9Konig R,Schramm G,Oswald M,Seitz H,Sager S,Zapatka M,Reinelt G,Eils R.Discovering functional gene expression patterns in the metabolic network of Escherichia coli with wavelets transforms[J].BMC Bioinformatics,2006,7:119-132.
  • 10Daubechies I,Sweldens W.Factoring wavelet transforms into lifting steps[J].The Journal of Fourier Analysis and Applications,1998,4(3):247-269.

二级参考文献24

  • 1李颖新,刘全金,阮晓钢.一种肿瘤基因表达数据的知识提取方法[J].电子学报,2004,32(9):1479-1482. 被引量:13
  • 2李颖新,阮晓钢.基于支持向量机的肿瘤分类特征基因选取[J].计算机研究与发展,2005,42(10):1796-1801. 被引量:51
  • 3李建中,杨昆,高宏,骆吉洲,郭政.考虑样本不平衡的模型无关的基因选择方法[J].软件学报,2006,17(7):1485-1493. 被引量:24
  • 4T. R. Golub, D. K. Slonim, P. Tamayo, et al. Molecular clas- sification of cancer: class discovery and class prediction by gene expression monitoring [ J]. Science, 1999, 286 : 531 - 537.
  • 5V. N. Danh, M. R. David. Tumor classification by partial least squares using microarray gene expression data [ J ]. Bioinformat- ics, 2002, 18:39 -50.
  • 6M. Xiong, L. Jin, W. Li, et al. Computational methods for gene expression - based tumor classification [ J ]. Biotechniques, 2000, 29 : 1264 - 1270.
  • 7P. Baldi, A. D. Long. A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical in- ferences of gene changes [ J ]. Bionformatics, 2001, 17 : 509 - 519.
  • 8D. S. Huang, C. H. Zheng. Independent component analysis- based penalized discriminant method for tumor classification using gene expression data [J]. Bioinformatics, 2006, 22:1855 - 1862.
  • 9Y. Liu, J. Shen, J. Cheng. Cancer Classification Based on the "Fingerprint"of Microarray Data [ C ]. Proceddings of the 1 st IEEE International Conference on Bioinformatics and Biomedical Engineering, 2007 : 176 - 179.
  • 10Y. Liu. Feature extraction for DNA microarray data in Proc [ C ].20th IEEE International Symposium on Computer - Based Medical Systems, 2007 : 371 -376.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部