期刊文献+

随机DEA期望值模型的一些性质 被引量:1

Some properties of the expected value model in stochastic data envelopment analysis
下载PDF
导出
摘要 为判别决策单元在随机DEA期望值模型下的随机有效性,首次提出了随机期望无效、随机期望弱有效、随机期望有效以及随机期望超有效的概念.并给出了三个命题用于判别不同显著性水平下随机期望效率与期望效率的关系.在此基础上,得到了两个重要的性质:(1)当期望效率保持不变时,随机期望效率为显著性水平的增函数;(2)当显著性水平保持不变时,随机期望效率为期望效率的增函数.最后,利用随机模拟和一个算例对上述结论进行了验证. The expected value model in stochastic data envelopment analysis (SDEA) is especially useful for evaluating the efficiency of the decision making units (DMUs) with fixed inputs and stochastic outputs. In this paper, we reinvestigate some properties of this model to extend its potential usage. In order to identify the type of the DMUs' efficiency of the expected value model in SDEA, we first propose four types of stochastic efficiencies stochastic expected inefficiency, stochastic expected weak efficiency, stochastic expected efficiency and stochastic expected super-efficiency. We, then, develop three propositions to show the relationship between stochastic efficiency and the expected efficiency. Based on the above research findings, we demonstrate two important properties: (1) The stochastic efficiency is an increase function of the significance level when the expected efficiency remains fixed; (2) The stochastic efficiency is an increase function of the expected efficiency when the significance level remains fixed. Finally, we illustrate the above results by using stochastic simulations and a numerical example.
出处 《运筹学学报》 CSCD 北大核心 2014年第2期29-39,共11页 Operations Research Transactions
基金 国家杰出青年科学基金(No.70925004) 高等学校博士学科点专项科研基金(No.20123514110012) 国家自然科学基金(No.71371053) 福州大学科研启动基金(No.022549)
关键词 随机DEA 决策单元 随机期望效率 期望效率 显著性水平 stochastic data envelopment analysis, decision making units, stochastic expected efficiency, expected efficiency, significance level
  • 相关文献

参考文献26

  • 1Sengupgta J K. Efficiency measurement in stochastic input-output systems [J]. International Journal of Systems Science, 1982, 13(3): 273-287.
  • 2Sengupta J K. Data envelopment analysis for efficiency measurement in stochastic case [J]. Computer and Operations Research, 1987, 14(2): 117-129.
  • 3. Sengupta J K. Robust efficiency measures in a stochastic efficiency model [J]. International Journal of Systems Science, 1988, 19(5): 779-791.
  • 4Sengupta J K. Nonlinear measures of technical efficiency [J]. Computer & Operations Research, 1989, 16(1): 55-65.
  • 5Sengupta J K. Transformations in stochastic DEA models [J]. Journal of Econometrics, 1990, 46(1-2): 109-124.
  • 6Banker R D, Morey R. The use of categorical variables in data envelopment analysis [J]. Man- agement Science, 1986, 32(12): 1613-1627.
  • 7Banker R D. Maximum likelihood, consistency and data envelopment analysis: a statistical foundation [J]. Management Science, 1993, 39(10): 1265-1273.
  • 8Schmidt P. Frontier production functions [J]. Econometric Reviews, 1985, 4(2): 289-328.
  • 9Greene W. The econometric approach to efficiency measurement [M]//The Measurement of Productive Eefficiency: Theory and Applications, New York: Oxford University Press, 1993.
  • 10Land K C, Lovell C A K, Thore S. Chance-constrained data envelopment analysis[J]. Man- agerial and Decision Economics, 1993, 14(6): 541-554.

同被引文献10

  • 1J K Senguptga. Efficiency measurement in stochastic input-output system [J]. International Journal of Systems Science,1982,13(2):273-287.
  • 2W W COOPER, H DEING, Z M HUANG, et al. Chanceconstrained programming approaches to technical efficienciesand inefficiencies in stochastic data envelopment analysis[J].Journal of the Operational Research Society, 2002, 53 ( 12):1347-1356.
  • 3T SUEYOSHI. Stochastic DEA for restructure strategy: anapportion to Japanese petroleum company[J]. Omega,2000,28(4):385-398.
  • 4E G TSIONAS, E N PAPADAKIS. A Bayesian approach tostatistical inference in stochastic DEA[J]. Omega, 2010(38):309 - 314.
  • 5A UDHAYAKUMAR, V CHARLES, K MUKESH. Sto-chastic simulation based genetic algorithm for chance con-strained data envelopment analysis problems[J]. Omega,2011(39) :387-397.
  • 6R FARE, S GROSSKOPF, C A K LOVELL,etal. Multilat-eral productivity comparisons when some outputs are undesira-ble: a non -parametric approachQ] . The Review of Econom-ics and Statistics,1989,71(1) :90 -98.
  • 7P ZHOU, K L POHA,B W ANGA. A non-radial DEA ap-proach to measuring environmental performance[J]. EuropeanJournal of Operational Research, 2007 , 178(1) : 1 - 9.
  • 8Z S HUA,Y B1ANA,L LIANGA. Eco-efficiency analysis ofpaper mills along the Huai River: An extended DEA approach[J]. Omega: The International Journal of Management Sci-ence, 2007,35(5) : 578_587.
  • 9A HAILU, T S VEEMAN. Non-parametric productivity anal-ysis with undesirable outputs: An application to the Canadianpulp and paper industry[J]. American Journal of AgriculturalEconomics,2001(83) : 605 -616.
  • 10许平,孙玉华.非期望产出的DEA效率评价[J].经济数学,2014,31(1):90-93. 被引量:9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部