期刊文献+

基于FAST角点和仿射改进的随机蕨丛的单目视觉实时匹配算法 被引量:4

A Monocular-vision Real-time Matching Algorithm Based on FAST Corners and Affine-improved Random Ferns
原文传递
导出
摘要 针对传统配准方法在自然特征粗匹配过程中在线匹配速度较慢、识别率较低的问题,提出一种基于FAST角点与仿射改进的适用于单目视觉实时定位的随机蕨丛匹配方案.该方案基于随机蕨半朴素贝叶斯非层次结构分类模型,突破了传统匹配方案中离线过程与在线过程的对称处理架构.采用FAST角点作为环境自然特征提升检测速度,进而改进随机蕨丛离线过程中稳定点选取、训练片元生成的仿射策略,提升识别率、缩短离线训练时间,最后收缩随机蕨丛规模,缩短在线匹配时耗.室内、外实时匹配定位实验结果表明该方案满足单目视觉定位的实时性、识别率需求. For classic calibration methods, there exist problems of low online matching speed and recognition rate in rough matching of natural features. To solve the problem, a random ferns matching algorithm based on FAST (Features from Accelerated Segment Test) corners and affine-improvement is proposed to realize monocular-vision real-time localization. This algorithm is based on a random fern semi-Bayes nonhierarchic classification model, which breaks the symmetrical framework of on-line and off-line processes in classic matching methods. It adopts FAST corners as the environment natural features to accelerate online detection, improves affine strategy for stable point set selection and training fragment generation in random ferns off-line process to improve recognition rate and reduce off-line training time, and scales back the size of random ferns to reduce time consumption of online matching. Indoor and outdoor matching and localization experiments show that the proposed algorithm meets requirements of real-timeness and recognition rate for monocular-vision localization.
出处 《机器人》 EI CSCD 北大核心 2014年第3期271-278,共8页 Robot
基金 科技部国际合作项目(2010DFA12160) 国家自然科学基金资助项目(51075420)
关键词 随机蕨丛 FAST角点 仿射变换 实时性 识别率 random ferns FAST (Features from Accelerated Segment Test) comer affine transformation real-time recognition rate
  • 相关文献

参考文献16

  • 1Lepetit V, Fua E Keypoint recognition using randomized trees[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(9): 1465-1479.
  • 2Ozuysa! M, Fua P, Lepetit V. FAST keypoint recognition in ten lines of code[C]//IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition. Piscataway, USA: IEEE, 2007: 1-8.
  • 3Calonder M, Lepetit V, Fua E Keypoint signatures for fast learn- ing and recognition[C]//European Conference on Computer Vi- sion. Berlin, Germany: Springer-Verlag, 2008:58-71.
  • 4Ozuysal M, Calonder M, Lepetit V, et al. FAST keypoint recog- nition using random ferns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3): 448-461.
  • 5Williams B, Klein G, Reid I. Real-time SLAM relocalisa- tion[C]//International Conference on Computer Vision. Piscat- away, USA: IEEE, 2007: 1-8.
  • 6Oshin O, Gilbert A, lllingworth J, et al. Action recognition us- ing randomised ferns[C]//Intemational Conference on Comput- er Vision. Piscataway, USA: IEEE, 2009: 530-537.
  • 7杨明浩,王阳生.保持视觉稳定性的增强现实注册算法[J].中国图象图形学报,2010,15(12):1842-1848. 被引量:5
  • 8陈靖,王涌天,林精敦,郭俊伟,刘伟,丁刚毅.基于增强现实技术的圆明园景观数字重现[J].系统仿真学报,2010,22(2):424-428. 被引量:41
  • 9王丽婷,丁晓青,方驰.基于随机森林的人脸关键点精确定位方法[J].清华大学学报(自然科学版),2009(4):543-546. 被引量:23
  • 10Harris C, Stephens M. A combined corner and edge detec- tor[C]//4th Alvey Vision Conference. 1988: 147-151.

二级参考文献40

  • 1常勇,何宗宜.基于ARToolKit的地下管网增强现实研究[J].武汉大学学报(信息科学版),2005,30(4):345-347. 被引量:8
  • 2Zhao W, Chellappa R, Rosenfeld A, et al. Face recognition: A literature survey [J]. ACM Computing Surveys, 2003, 35(4): 399- 458.
  • 3Pantic M, Rothkrantz M. Automatic analysis of facial expression: The state of the art [J]. IEEE Trans on PAMI, 2000, 22(12): 1424-1445.
  • 4WANG Jiangang, Sung E. Facial feature extraction in an infrared image by proxy with a visible face image [J]. IEEE Trans on Instrumentation and Measurement, 2007, 56(5): 2057 - 2066.
  • 5Hess M, Martinez G. Facial feature extraction based on the smallest univalue segment assimilating nucleus (SUSAN) algorithm [C]//Proceedings of Picture Coding Symposium. San Franscisco, California, 2004, 261 - 266.
  • 6Smith S M, Brady J M. SUSAN-A new approach to low level image processing [J]. International Journal of Computer Vision, 1997, 23(1): 45- 78.
  • 7Breiman L. Random forests [J]. Machine Learning, 2001, 45: 5-32.
  • 8Ma Yong. Research on face detection and organ localization under complex background [D]. Beijing: Tsinghua University, July 2004.
  • 9Zhou Z H, Geng X. Projection functions for eye detection [J]. Pattern Recognition, 2004, 37(5) : 1049 - 1056.
  • 10R Azuma, Y Baillot, R Behringer, et al. Recent advances in augmented reality [J]. Computer Graphics and Applications (S0272-1716), 2001, 21(6): 34-47.

共引文献66

同被引文献42

  • 1Calonder M, Lepetit V, Streeha C, et al. BriefL Binary robust independent elementary features [ C ]. ComputerVi- sion, ECCV2010, Springer, 2010.
  • 2Calonder M, Lepetit V, Ozuysal M, et al. BRIEF : com- puting a local binary descriptor very fast [ J ]. Pattern A- nalysis and Machine Intelligence, IEEE Transactions on, 2012,34(7) :1 281 -1 298.
  • 3Rublee E, Rabaud V, Konolige K, et al. ORB: an effi- cient alternative to SIFT OR SURF[ C]. Computer Vision ( ICCV ), 2011 IEEE International Conference on. IEEE,2011.
  • 4Rosten E, Drummond T. Fusing points and lines for high performance tracking[C]. Computer Vision, 2005 ICCV, 2005 Tenth IEEE International Conference on. IEEE, 2005.
  • 5A. Alahi, R. Ortiz, and P. Vandergheynst. FREAK: Fast Retina Keypoint [ J ]. Computer Vision and Pattern Recognition. 2012 ( 7 ) :510 - 517.
  • 6Lepetit V, Fua P. Towards recognizing feature points using classification trees [ R ]. Swiss Federal Institute of Technol- ogy, Lausance, Switzerland, 2004.
  • 7Lepetit V, Fua P. Keypoint recognition using randomized trees [ J ]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2006,28 (9) : 1 465 - 1 479.
  • 8Ozuysal M, Fua P, Lepetit V. Fast keypoint recognition in ten lines of code [ C ]. IEEE Conference on Computer Vision and Pattern Recognition, 2007 CVPR07 IEEE,2007.
  • 9Ozuysal M, Calonder M, Lepetit V, et al. Fast keypoint recognition using randon ferns [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010,32 ( 3 ) : 448 - 461.
  • 10Lowe D G. Object recognition from local scale - invariant features[ C t- In : Proceedings of the 7th IEEE Internation- al Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部