期刊文献+

基于小波域和活动轮廓模型的纹理图像分割

Texture Segmentation based on wavelet domain and active contour models
下载PDF
导出
摘要 提出一种双树复小波域局部二值模式和活动轮廓模型的纹理图像分割方法。该方法首先使用双树复合小波分解纹理图像,然后使用局部二值模式提取纹理特征。利用最大熵准则对纹理特征图像进行选择,活动轮廓模型用于最后的分割。实验结果表明提出的方法对于合成纹理和自然场景数据集,达到了较高的分割精度。 A texture segmentation method is proposed in this paper based on local binary patterns in dual tree complex wavelet transform domain and active contour models. The method first decomposes the texture image with DTCWT. Then the LBP operator is used to extract texture features. The maximum entropy criterion is used for selecting the feature images. Finally the segmentation is obtained by using ACM. The experimental results show that the method can achieve relatively high segmentation accuracy for both synthetic textures and natural scene images.
出处 《信息技术》 2014年第6期4-8,共5页 Information Technology
基金 国家自然科学基金(61103017)
关键词 纹理图像分割 双树复合小波变换 局部二值模式 活动轮廓模型 最大熵准则 texture segmentation dual tree complex wavelet transform (DTCWT) local binary patterns(LBP) active contour models (ACM) maximum entropy criterion
  • 相关文献

参考文献8

  • 1张虎,方贤勇,吴忠标.基于多尺度细胞局部二值模式的人体检测[J].计算机技术与发展,2012,22(7):52-56. 被引量:2
  • 2OJALA T,PIETIKAMNEN M.,HARWOOD D.Performance Evaluation of Texture Measures with Classification Based on Kullback Discrimination of Distributions[C]//Proc.1994 International Conference on Pattern Recognition,1994,1:582-585.
  • 3VO A,ORAINTARA S.A study of relative phase in complex wavelet domain:Property,statistics and applications in texture image retrieval and segmentation[J].Signal Processing:Image Communication,2010,25(1):28-46.
  • 4SAVELONAS A M,IAKOVIDIS D K,MAROULIS D.LBP-guided active contours[J].Pattern.Recogn.Lett,2008,9(1):1404-1415.
  • 5田立伟.复小波框架、M尺度复小波及对偶树复小波的构造[D].西安:陕西师范大学,2011.
  • 6宋翠玉,李培军,杨锋杰.基于多元局部二值模式的遥感图像纹理提取与分类[J].遥感技术与应用,2011,26(3):322-327. 被引量:10
  • 7CHAN T F,VESE L A.Active contours without edges[J].IEEE Trans.Image.Process,2001,10(2):266-277.
  • 8CHAN T F,SANDBERG B Y,VESE L A.Active contours without edges for vector-valued images[J].J.Vis.Commun.Image Represent,2000,11(2):130-141.

二级参考文献32

  • 1宋翠玉,李培军,杨锋杰.运用多尺度图像纹理进行城市扩展变化检测[J].国土资源遥感,2006,18(3):37-42. 被引量:22
  • 2彭光雄,李京,何宇华,胡德勇.利用纹理分析方法提取CBERS02星CCD图像土地覆盖信息[J].遥感技术与应用,2007,22(1):8-13. 被引量:18
  • 3Marceau D J, Howarth P J, Dubois J M, et al. Evaluation of the Grey-level Co-occurrence Matrix Method for Land-Cover Classification Using SPOT Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990,28(4) : 513-519.
  • 4Jensen J R. Detecting Residential Land-Use Development at the Urban Fringe[J]. Photogrammetric Engineering & Remote Sensing, 1982,48(6):629-643.
  • 5Gong P,Marceau D J, Howarth P J. A Comparison of Spatial Feature Extraction Algorithms for Land-Use Classification with SPOT HRV Data[J]. Remote Sensing of Environment, 1992,40: 137-151.
  • 6Coburn C A,Roberts A C lB, A Multiscale Texture Analysis Procedure for Improved Forest Stand Classification[J]. International Journal of Remote Sensing, 2004, 25 (20): 4287- 4308.
  • 7Haralick R M,Shanmugam K, Dinstein I. Texture Feature for Image Classification [ J ]. IEEE Transactions on Systems, Man, and Cybermetics, 1973,3 :610-625.
  • 8Ojala T,Pietikainen M, Mfienpaa T. Multiresolution Gray Scale and Rotation Invariant Texture Analysis with Local Binary Pattern[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24(7) : 971-987.
  • 9Kyllonen J ,Pietikfiinen M. Visual Inspection of Parquet Slabs by Combining Color and Texture [ J ]. Proceedings IAPR Workshop on Machine Vision Applications (MVA'00), November 28-30, Tokyo, Japan, 2000 : 187-192.
  • 10Feng X, Pietik/iinen M, Hadid A. Facial Expression Recognition with Local Binary Patterns and Linear Programming[J]. Pattern Recognition and Image Analysis, 2005, 15 (2) : 550- 552.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部