期刊文献+

线性菲涅尔式聚光系统单管接收器的设计与优化 被引量:13

Design and analysis of a CPC with single vacuum tube for linear Fresnel reflector system
原文传递
导出
摘要 接收器是决定线性菲涅尔式聚光集热系统光学效率的关键部件之一.设计了一种适用于高温介质(>500°C)的线性菲涅尔式聚光系统的接收器,由单根真空集热管和CPC组成,并重点研究了CPC最大接受半角和截取比选择对其性能的影响.研究结果表明:CPC汇聚率随最大接受半角的增大而缓慢增大;若截取比小于0.65,则CPC汇聚率急剧下降;最大接受半角为45°、截取比为0.75的CPC开口宽度为475.49 mm,汇聚率为80.15%;基于该CPC的系统光热效率为58.06%,由此得出CPC实际汇聚率高于78.42%. Compound parabolic collector (CPC) plays an important role in optical efficiency of linear Fresnel reflector (LFR) system. In this paper, we designed and optimized a CPC for LFR system. The main element influence on optical performance of CPC was studied, and the maximum acceptance angle and the truncation ratio of CPC were principally reported. Simulation results of the relationship between maximum acceptance angle and convergence ratio show that CPC convergence ratio increased slowly and linearly with the increase of maximum acceptance angle. Experimental results of the relationship between truncation ratio and convergence ratio show that CPC convergence ratio increased sharply until truncation ratio is greater than 0.65. CPC convergence ratio basically achieves a certain value when truncation ratio is greater than 0.7. Ray tracing simulation study illustrated that CPC, with 45° maximum acceptance angle, 0.75 truncation ratio and 475.49 mm opening width, could achieve a high concentrate ratio about 80.1%. Meanwhile, this conclusion was further verified by the experimental measurement results.
出处 《中国科学:技术科学》 EI CSCD 北大核心 2014年第6期597-602,共6页 Scientia Sinica(Technologica)
基金 国家重点基础研究发展计划前期研究专项(2012CB626805) 国家国际科技合作专项(2011DFA61850) 甘肃省高校基本科研业务费专项(202089)资助项目
关键词 线性菲涅尔系统 CPC 最大接受半角 截取比 汇聚率 linear Fresnel reflector system, CPC, maximum acceptance angle, truncation ratio, convergence ratio
  • 相关文献

参考文献18

  • 1Duffie J A, Beckman W A. Solar Engineering of Thermal Processes. Hoboken, New Jersey: John Wiley & Sons, 2013.
  • 2Kalogirou S A. Solar thermal collectors and applications. Prog Energy Combust Sci, 2004, 30: 231-295.
  • 3Mills D. Advances in solar thermal electricity technology. Solar Energy, 2004, 76: 19-31.
  • 4杜春旭,王普,吴玉庭,马重芳.线性菲涅耳聚光装置的聚光比分析[J].光学学报,2011,31(8):91-97. 被引量:17
  • 5Pye J D, Morrison G L, Behnia M. Transient modelling of cavity receiver heat transfer for the compact linear Fresnel reflector. In: ANZSES Annual Conference, 2003. 69-78.
  • 6Reynolds D J, Jance M J, Behnia M, et al. An experimental and computational study of the heat loss characteristics of a trapezoidal cavity absorber. Solar Energy, 2004, 76: 229-234.
  • 7Abbas R, Montes M J, Piera M, et al. Solar radiation concentration features in linear Fresnel reflector arrays. Energy Convers Manage, 2012, 54: 133-144.
  • 8Abbas R, Munoz J, Martínez-Val J M. Steady-state thermal analysis of an innovative receiver for linear Fresnel reflectors. Appl Energy, 2012, 92: 503-515.
  • 9Sahoo S S, Singh S, Banerjee R. Steady state hydrothermal analysis of the absorber tubes used in linear Fresnel reflector solar thermal system. Solar Energy, 2013, 87: 84-95.
  • 10Fac?o J, Oliveira A C. Numerical simulation of a trapezoidal cavity receiver for a linear Fresnel solar collector concentrator. Renew Energy, 2011, 36: 90-96.

二级参考文献23

  • 1B. Sorensen, P. Breeze, T. Storvick et al.. Renewable Energy Focus Handbook [M]. New York: Elsevier/Academic Press, 2009. 319-333.
  • 2J. A. Duffle, Solar Engineering of Thermal Processes[M]. New York: Jone Wiley & Sons, 2006. 326.
  • 3A. Rabl. Active Solar Collectors and Their Applications[M]. New York: Oxford, 1985.19-120.
  • 4Jorge Facfio, Armando c. Oliveira. Numerical simulation of a trapezoideal cavity receiver for a linear Fresnel solar collector concentrator [J]. Renewable Energy, 2011, 36(2) : 90-96.
  • 5Frank Kreith, Jan F. Kreider. Principles of Solar Engineering [M]. Washington: Hemisphere Pub. Corp. , 1978. 242-252.
  • 6P. L. Singh, S. Ganesan, G. C. Yadav. Performance study ofalinear Fresnel concentrating solar device[J]. Renewable Energy, 1999, 18(3): 409--416.
  • 7B. S. Negi, S. S. Mathur, T. C. Kandpal. Optical and thermal performance evaluation of a linear Fresnel reflector solar concentrator[J].Solar & Wind Technology, 1989, 6 (5) : 589-593.
  • 8B. S. Negi, T. C. Kandpal, S. S. Mathur. Designs and performance characteristics of a linear Fresnel reflector solar concentrator with a flat vertical absorber[J]. Solar & Wind Technoloev, 1990, 7(4): 3794392.
  • 9S. S. Mathur, B. S. Negi, T. C. Kandpal. Geometrical designs and performance analysis of a linear Fresnel reflector solar concentrator with a flat horizontal absorher[J]. International J. Energy Research, 1990, 14(7) : 107-124.
  • 10S. S. Mathur, T. C. Kandpal, B. S. Negi. Optical design and concentration characteristics of linear Fresnel reflector solar concentrators--II, mirror elements of equal width[J]. Energy Conversion and Management, 1991, 31(3) : 221-232.

共引文献20

同被引文献99

引证文献13

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部