期刊文献+

拟南芥叶绿体分裂突变体pd137的基因鉴定与分析 被引量:2

Genetic Mapping and Analysis of a Chloroplast Division Mutant pd137 in Arabidopsis thaliana
原文传递
导出
摘要 pd137是经甲基磺酸乙脂(ethyl methane sulphonate,EMS)诱变并通过筛选得到的一个拟南芥叶绿体分裂突变体。该突变体的叶绿体表型与野生型相比有很大差异:叶绿体面积显著增大,细胞中叶绿体数量明显减少。遗传分析显示pd137的突变表型受隐性单基因控制。本研究通过遗传作图将该突变基因粗定位于拟南芥2号染色体的分子标记CH2-13.70和CH2-16.0区间内。该区间内已知的与叶绿体分裂相关的基因只有FtsZ2-1。对FtsZ2-1基因的测序结果显示pd137突变体的FtsZ2-1基因第505位碱基发生了无义突变,使蛋白质翻译提前终止。该突变还严重影响了FtsZ2-1基因的mRNA水平。转基因互补实验进一步验证了该突变体表型是由于FtsZ2-1基因突变引起。本项工作为研究叶绿体分裂的机制提供了新材料和一些有用的线索。 An Arabidopsis thaliana chloroplast division mutant, chloroplast division 137 (pd137), was obtained with an ethyl methane sulphonate (EMS) mutagenesis and mutant screening strategy. Compared with the wild type, pd137 showed an obviously different chloroplast phenotype. It has a much larger chloroplast size and a lower number of chloroplasts per cell than those in the wild type. Genetic analysis indicated that the mutant phenotype was controlled by a single recessive gene. pd137 was mapped to a region between molecular markers CH2-13.70 and CH2-16.0 on chromosome 2. In this region, FtsZ2-1 is the only identified gene which is involved in chloroplast division so far. DNA sequencing of the FtsZ2-1 gene in pd137 revealed a nonsense mutation at the 505th base. The mutation caused a premature translational termination of FtsZ2-1 protein and severely affected the mRNA level of FtsZ2-1 in pd137. Complementation experiment result confirmed that the chloroplast division defect ofpdl37 was due to the mutation in FtsZ2-1. Our study provides new material and some useful information for the study of chloroplast division.
出处 《植物生理学报》 CAS CSCD 北大核心 2014年第6期841-848,共8页 Plant Physiology Journal
基金 国家自然科学基金(31070162)
关键词 拟南芥 叶绿体分裂 FtsZ2-1 图位克隆 Arabidopsis thaliana chloroplast division FtsZ2-1 map-based cloning
  • 相关文献

参考文献1

二级参考文献72

  • 1Vitha, S., McAndrew, R.S., and Osteryoung, K.W, (2001). FtsZ ring formation at the chloroplast division site in plants. J. Cell Biol. 153, 111-120.
  • 2Wada, M., Kagawa, T., and Sato, Y. (2003). Chloroplast movement. Annu. Rev. Plant Biol, 54, 455-468.
  • 3Wang, D., Kong, D., Wang, Y., Hu, Y., He, Y., and Sun, J. (2003). Isolation of two plastid division ftsZ genes from Chlamydomonas reinhardtii and its evolutionary implication for the role of FtsZ in plastid division. J. Exp. Bot. 54, 1115-1116.
  • 4Warrens, A.N., Jones, M.D., and Lechler, R.I. (1997). Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene. 186, 29-35.
  • 5Williams, W,E., Gorton, H,L, and Witiak, S,M. (2003). Chloroplast movements in the field. Plant, Cell & Environment. 26, 2005-2014.
  • 6Yoder, D.W., et al. (2007). Effects of mutations in Arabidopsis FtsZ1 on plastid division, FtsZ ring formation and positioning, and FtsZ filament morphology in vivo. Plant Cell Physiol. 48, 775-791.
  • 7Zuckerkandl, E., and Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In Evolving Genes and Proteins, Vogel V.BaH.J., ed. (New York: Academic Press), pp. 97-166.
  • 8We thank Joyce Bower and Dr David Yoder for generating the ftsZ1-1 ftsZ2-2 double mutant and Mia Hemmes for assistance in the cloning of pBluescript P4-P1R and pBluescript P2R-P3. No conflict of interest declared.
  • 9Araki, Y., Takio, S., Ono, K., and Takano, H. (2003). Two types of plastid ftsZ genes in the liverwort Marchantia polymorpha. Protoplasma. 221, 163-173.
  • 10Austin, J., Ⅱ, and Webber, A.N. (2005). Photosynthesis in Arabidopsis thaliana mutants with reduced chloroplast number, Photosynth. Res. 85, 373-384.

共引文献3

同被引文献38

  • 1Ajjawi I, Coku A, Froehlich JE, Yang Y, Osteryoung KW, Benning C, Last RL .2011, A J-like protein influences fatty acid com- position of chloroplast lipids in Arabidopsis. PLoS One, 6 (10): e25368.
  • 2Boffey SA, Ellis JR, Sellden G, Leech RM .1979, Chloroplast di- vision and DNA synthesis in light-grown wheat leaves. Plant Physiol, 64 (3): 502-505.
  • 3Brogna S, Wen J .2009, Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol, 16 (2): 107-113.
  • 4Colletti KS, Tattersall EA, Pyke KA, Froelich JE, Stokes KD, Os- teryoung KW .2000, A homologue of the bacterial cell division site-determining factor MinD mediates placement of the chloro- plast division apparatus. Curr Biol, 10 (9): 507-516.
  • 5de Lima Morais DA, Harrison PM .2010, Large-scale evidence for conservation of NMD candidature across mammals. PLoS One,5 (7): e11695.
  • 6Drouaud J, Camilleri C, Bourguignon PY, Canaguier A, Berard A, Vezon D, Giancola S, Brunel D, Colot V, Prum Bet al .2006, Variation in crossing-over rates across chromosome 4 of Arabi- dopsis thaliana reveals the presence of meiotic recombination "hot spots". Genome Res, 16 (1): 106-114.
  • 7Errington J, Daniel RA, Scheffers DJ .2003, Cytokinesis in bacteria. Mierobiol Mo! Biol R, 67 (1): 52-65.
  • 8Exinger F, Lacroute F .1979, Genetic evidence for the creation of a reinitiation site by mutation inside the yeast ura 2 gene. Mol Gen Genet, 173 (1): 109-113.
  • 9Gao H, Kadirjan-Kalbach D, Froehlieh JE, Osteryoung KW .2003, ARC5, a cytosolic dynamin-like protein from plants, is part of the chloroplast division machinery. Proc Natl Acad Sci USA, 100 (7): 4328-4333.
  • 10Glynn JM, Froehlich JE, Osteryoung KW .2008, Arabidopsis ARC6 coordinates the division machineries of the inner and outer chlo- roplast membranes through interaction with PDV2 in the inter- membrane space. Plant Cell, 20 (9): 2460-2470.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部