期刊文献+

温莪术内生真菌Gibberella moniliformis EZG0807诱变及其诱变株遗传稳定性研究 被引量:3

Mutagenesis and Mutant Genetic Stability of the Endophytic Fungus Gibberella moniliformis EZG0807 from Curcuma wenyujin
原文传递
导出
摘要 利用大梯度超导磁体(JMT-16T50F)模拟失重和超重环境对温莪术内生真菌Gibberella moniliformis EZG0807进行诱变,以期得到代谢产物活性高、遗传稳定性好的菌株。诱变24 h、48 h和72 h后,通过稀释涂布平板法得到139株诱变菌株;经滤纸片抑菌法初筛和MTT法抗肿瘤细胞活性实验复筛,筛选出高活性诱变菌株M7226。采用群体传代的方法考察菌株M7226十代以内菌株的生长状况和次级代谢产物抗菌抗肿瘤活性的能力。结果显示活性内生真菌EZG0807经大梯度超导磁体诱变,筛选得到一株代谢产物活性高、遗传稳定性好的诱变菌株M7226,为后续次级代谢产物的分离纯化奠定基础,同时此法为真菌诱变育种提供了一种新的可供选择的方法。 In order to obtain a strain with good genetic stability and high activity of secondary metabolites, the wild-type strain Gibberella moniliformis EZG0807 was mutated by a large gradient superconducting magnet (JMT-16T50F) which can simulate micro and hyper-gravity environment. After G. moniliformis EZG0807 was mutated for 24 h, 48 h and 72 h under these conditions, 139 mutants were isolated with the spread plate method. Among them, a highly active mutant M7226 was selected according to the ability of antibacterial and antitumor activity with the filter paper and MTT method, respectively. Furthermore, the biomass of mycelia growth and the bioactivity of secondary metabolites of the strain M7226 within ten generations were investigated to detect its genetic stability. Accordingly, a highly active and stable heritable strain M7226 was got after mutagenesis with the superconducting magnet, which demonstrated that this superconducting magnet can be used as a new method for mutagenesis breeding and laid the foundation for the subsequent separation and purification of secondary metabolites.
出处 《中国生物工程杂志》 CAS CSCD 北大核心 2014年第5期23-29,共7页 China Biotechnology
关键词 诱变 超导磁体 内生真菌 Mutagenesis Superconducting magnet Endophytic fungus
  • 相关文献

参考文献21

  • 1刘录祥 郑企成 等.空间诱变与作物改良[M].北京:原子能出版社,1997..
  • 2Qian A R, Yin D C, Yang P F, et al. Development of a ground- based simulated experimental platform for gravitational biology.IEEE Transactions on Applied Superconductivity, 2009, 19 (2) : 42-46.
  • 3Qian A R, Yin D C, Yang PF, et al. Application of diamagnetic levitation technology in biological sciences research. IEEE Transactions on Applied Superconductivity, 2013, 23 (1): 3600305.
  • 4Hill R J, Larkin O J, Dijkstra C E, et al. Effect of magnetically simulated zero-gravity and enhanced gravity on the walk of the common frnitfly. Journal of the Royal Society Interface, 2012, 9 (72) : 1438-1449.
  • 5Liu Y M, Zhu O M, Strayer D M, et al. Magnetic levitation of large water droplets and mice. Advances in Space Research, 2010, 45(1) : 208-213.
  • 6Manzano A I, van Loon J J, Christianen PC, et al. Gravitational and magnetic field variations synergizc to cause subtle variations in the global transcriptional state of Arabidopsis in vitro callus cultures. BMC Genomics, 2012, 13 ( 1 ) : 105.
  • 7Herranz R, Larkin O J, Dijkstra C E, et al. Microgravity simulation by diamagnetic levitation: effects of a strong gradient magnetic field on the transcriptional profile of Drosophila melanogaster. BMC Gcnomies, 2012, 13(1) : 52.
  • 8Coleman C B, Gonzalez-Villalobos R A, Allen PL, et al. Diamagnetic levitation changes growth, cell cycle, and gene expression of Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2007, 98(4): 854-863.
  • 9Yan J F, Shang P, Zheng D, et al. Effect of simulated space gravity environment on Gibberella moniliformis EZG0807. Current Microbiology, 2012, 64(5) : 469-476.
  • 10朱大诚,徐彭.医学功能学科实验指导.第二版.北京:中国协和医科大学出版社,2010.

二级参考文献41

共引文献71

同被引文献61

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部