期刊文献+

薄壁管材连续矫直拉伸失稳极限弯曲半径模型 被引量:3

Limit Bending-Radius Model of Tensile Instability for Continuous Straightening a Thin-Walled Tube
原文传递
导出
摘要 薄壁管材连续矫直拉伸失稳极限弯曲半径作为重要的工艺参数,直接决定了设备结构和产品质量。而目前现场仍沿用经验图表结合人工经验和反复试矫对其进行估定,为此基于薄壳理论的相关假设,确定了变形区的应力应变,运用Swift分散失稳准则建立了塑性拉伸失稳极限弯曲半径的解析模型,并进行了有限元仿真验证。研究结果表明:解析模型可正确计算薄壁管材矫直时拉伸失稳的极限弯曲半径,该半径随初始弯曲半径的增大而减小,并与管材直径和金属塑性加工能力有关,为继续深入研究矫直相关工艺参数的合理设置、完善薄壁管材矫直理论体系奠定基础。 The limit bending-radius of tensile instability as the main straightening technical parameter, decides the struc- ture of equipment and the quality of products for continuous straightening thin-walled tubes. However, it is usually carried out based on the experiential data and chart by skilled laborers, whose art is based on long experience and experiments. Therefore, by means of the membrane shell theory and it' s relevant hypothesis the normal strain and stress components were firstly obtained, and then the limit bending-radius model for the prediction of diffuse plastic instability under pure bending was presented using Swift' s criterion, finally the dynamic simulation was done by FEA. The results have shown that: the analytical model can be used to calculate the limit bending-radius of tensile instability for straightening thin- walled tubes correctly, which is decreased with the increase of the initial bending-radius, and it relates to the diameter and the metal plastics deformation capacity of the tube. The basis can be provided for optimizing straightening technical pa- rameters and completing the theory of thin-walled tube straightening.
出处 《钢铁》 CAS CSCD 北大核心 2014年第6期53-58,共6页 Iron and Steel
基金 国家自然科学基金资助项目(50905030)
关键词 薄壁管材 矫直 极限弯曲半径 拉伸失稳 thin-walled tube straightening limit bending-radius tensile instability
  • 相关文献

参考文献13

  • 1张子骞,杨会林,田永利.薄壁管材矫直过程应变中性层偏移模型与分析[J].中国机械工程,2013,24(10):1390-1395. 被引量:11
  • 2张子骞,张柏森,杨会林,颜云辉.管棒材等曲率矫直力模型可视化设计[J].东北大学学报(自然科学版),2012,33(3):409-413. 被引量:13
  • 3Boria S, Pettinari S, Giannoni F. Theoretical Analysis on the Collapse Mechanisms of Thin-Wailed Composite Tubes [J]. Composite Structures, 2013, 103: 43.
  • 4LI Xue-tong WANG Min-ting DU Feng-shan XU Zhi-qiang.FEM Simulation of Large Diameter Pipe Bending Using Local Heating[J].Journal of Iron and Steel Research International,2006,13(5):25-29. 被引量:5
  • 5Limam A, Lee L H, Corona E, etal. Inelastic Wrinkling and Col- lapse of Tubes Under Combined Bending and Internal Pressure [J]. International Journal of Mechanical Sciences, 2010, 52(5): 637.
  • 6Nefussi G, Combescure A. Coupled Buckling and Plastic Insta- bility for Tube Hydroforming [J]. International Journal of Me- chanical Sciences, 2002,44(5):899.
  • 7Jeong Kim, Sang-Woo Kim, Woo-Jin Song, etal. Analytical Ap- proach to Bursting in Tube Hydroforming Using Diffuse Plastic Instability [J]. International Journal of Mechanical Sciences, 2004,46(10): 1535.
  • 8Ramin Hashemi, Abroad Assernpour, Ehsan Masoumi Khalil Abad. Implementation of the Forming Limit Stress Diagram to Obtain Suitable Load Path in Tube Hydroforming Considering M-K Model [J]. Materials & Design, 2009,30(9): 3545.
  • 9汪承璞,冯苏宁,陆匠心.轿车零件应变分析与FLD选材预测[J].钢铁,1999,34(2):43-46. 被引量:10
  • 10Bui Q H, Bihamta R, Guillot M, et al, Investigation of the Form- ability Limit of Aluminium Tubes Drawn With Variable Wall Thickness [J]. Journal of Materials Processing Technology, 2011,211(3): 402.

二级参考文献11

共引文献29

同被引文献32

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部