期刊文献+

适合于空间技术领域应用的Sn掺杂Mn_3GaN负热膨胀材料研究(英文) 被引量:1

Sn-Doped Mn_3GaN Negative Thermal Expansion Material for Space Applications
原文传递
导出
摘要 采用球磨后放电等离子体烧结的方法制了化学成分为Mn3Ga1-xSnxN(x=0,0.1,0.2,0.3,0.4)的反钙钛矿锰氮化合物。研究了其热膨胀性能、导热性能和力学性能。结果表明:所有样品热膨胀性能与Sn含量有关,随着Sn含量的增加,负热膨胀温区向高温移动。其中,Mn3Ga0.9Sn0.1N化合物在279到338K温区内的负热膨胀系数为-27.5×10^-6K^-1,负热膨胀温区宽度为59K。而Mn3Ga0.6Sn0.4N在363-400K温区内的热膨胀系数较小,接近零膨胀。此外,这类负热膨胀材料的热导率约为3.2W·(m·K)^-1,压缩强度约为210MPa。 The anti-perovskite manganese nitrides with the general formula Mn3Ga1-xSnxN (x=0, 0.1, 0.2, 0.3, 0.4) were fabricated by mechanical ball milling followed by spark plasma sintering (SPS). The temperature dependence of thermal expansion, thermal conductivity and mechanical properties were investigated. The results show that the negative thermal expansion (NTE) operation-temperature window shifts toward higher temperature with increasing of Sn concentration. Typically, the linear NTE coefficient of the Mn3Ga0.9Sn0.1N compound reaches as much as -27.5× 10^-6K^-1, with an operation-temperature window of 59 K from 279 to 338 K. In addition, the coefficient of thermal expansion (CTE) of Mn3Ga0.6Sn0.4N is very low in the temperature range of 363-400 K. The value of thermal conductivity of this material is about 3.2 W.(m-K)1 around room temperature. Compression test indicates that the compressive strength is about 210 MPa. This NTE material may possibly he exploited to design the critical components for space applications.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第6期1304-1307,共4页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China(51077123) Cryogenic Propellant Technology State Key Laboratory Open Research Topic(SKLTSCP 1204)
关键词 负热膨胀 反钙钛矿 空间技术 negative thermal expansion anti-perovskite space technology
  • 相关文献

参考文献15

  • 1Iikubo S, Kodama K, Takenaka K et al. Physical Review Letters [J], 2008, 101: 20.
  • 2Takenaka K., Takagi H. Applied Physics Letters[J], 2009, 94:13.
  • 3Chen Jun, Fan Longlong, Ren Yang et al. Physical Review Letters[J], 2013, 110:11.
  • 4Chen Jun, Wang Fangfang, Huang Qingzhen et al. Scientific Reports[J], 2013, 3:2458.
  • 5Sarah E, Tallentire E, Felicity C et al. Journal of American Chemical Society[J], 2013, 135:34.
  • 6Haidn O J. In Advances on Propulsion Technology for High-speedAircraft[J], 2008, 6:40.
  • 7Sutton G E Journal of Propulsion andPower[J], 2003, 19:6.
  • 8Gilmore D G; Donabedian M. Spacecraft Thermal Control Handbook[M]. California: The Aerospace Press, 2003: 2.
  • 9Sleight A W, Mary T A, Evans J S O. US Patent[P], 1995: 5.
  • 10Mary T A, Evans J S O, Vogt T et al. Science[J], 1996, 272:5258.

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部