期刊文献+

涂层导体用Ta掺杂CeO_2过渡层的研究(英文) 被引量:1

Study of Ta-doped CeO_2 Buffer Layer for Coated Conductors
原文传递
导出
摘要 采用简单的金属有机物沉积方法在自制的Ni-5W基带上成功地制备了Ta掺杂CeO2过渡层。XPS结果表明:在热处理时的还原性气氛中,Ta5+优先于Ce4+被还原为Ta4+,这有利于减少或抑制由于Ce4+被还原而产生的裂纹和孔洞。XRD结果表明除CeO2的衍射峰稍变小外,没有发现新的物相生成,这说明Ta4+部分取代了CeO2晶格中Ce4+的位置生成了Ce0.75Ta0.25O2.Ce0.75Ta0.25O2的ω-扫描和-扫描半高宽带分别是4.38o和6.67o,这表明Ce0.75Ta0.25O2具有良好的面外和面内织构。AES结果表明单层Ce0.75Ta0.25O2的厚度大约为70 nm,在过渡层的表面没有检测到Ni元素,说明该过渡层具有很好的阻止元素扩散的能力。综上说明,Ta掺杂的CeO2过渡层有望成为涂层导体用单层多功能过渡层。 Abstract: Ta-doped CeO2 buffer layers were grown on the home-made textured Ni-5W substrates for YBCO coated conductors by a simple metal-organic deposition technique. The characterization of the samples was discussed. XPS results indicate that Ta^5+ is reduced into Ta^4+ prior to Ce^4+, which is helpful to suppress the formation of holes and cracks in CeO2 films from reducing Ce^4+ into Ce^3+. Additionally, no new phase is found by doping Ta into CeO2, which indicates that Ta^4+ replaces the Ce^4+ position in CeO2 lattice to form Ce0.75Ta0.25O2. The Ce0.75Ta0.25O2 has a good out-of-plane and in-plane texture FWHM values for to scan and φ scan are 4.38° and 6.67°, respectively. AES measurements show that no Ni element is detected on the surface of Ce0.75Ta0.25O2 film, and a one-layer film has a thickness of about 70 nm. It is promising that the presently developed Ce0.75Ta0.25O2 film can be used as a single multi-functional buffer layer for coated conductor.
机构地区 北京工业大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第6期1329-1331,共3页 Rare Metal Materials and Engineering
关键词 CeO2过渡层 掺杂 涂层导体 CeO2 buffer layer doping coated conductor
  • 相关文献

参考文献10

  • 1Bhuiyan M S, Paranthaman M, Sathyamurthy Set al. Supercond Sci Technol[J], 2003, 16:1305.
  • 2Bandrea Cavallaro, Felip Sandiumenge, Jaume G~tzquez et al. Adv Funct Mater[J], 2006, 16:1363.
  • 3Stewart E, Bhuiyan M S, Sathyamurthy Set al. Materials Research Bulletin[J], 2006, 41: 1063.
  • 4Chen S, Wang S S, Shi K et al. Physica C[J], 2005, 419:7.
  • 5Sanghyun Oh, Jaeun Yoo, Kyuhan Lee et al. Physica C[J], 1998, 308:91.
  • 6Zhao Y, Suo H L, Liu Met al. Physica C[J], 2006, 440:10.
  • 7Coil M, G'azquez J, Sandiumenge F et al. Nanotechnology[J], 2008, 19:395601.
  • 8Jennifer L M, Tanja D, Antonella R et al. Chem Mater[J], 2007, 19:1134.
  • 9Balaji P Mandal, Grover V, Tyagi A K. Materials Science and Engineering A[J], 2006, 430:120.
  • 10Gao Y, Herman G S, Thevuthasan Set al. J Vac Sci Technol A [J], 1999, 17:961.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部