期刊文献+

Nb_3Sn超导股线热应变分析模型研究 被引量:3

Thermal Strain Analysis Model of Nb_3Sn Superconducting Strands
原文传递
导出
摘要 ITER聚变反应堆上Nb3Sn超导股线是由脆性金属间化合物构成的,由于其间各组分不同的热胀冷缩系数和不同的弹性模量,使得股线从热反应温度或热处理温度到室温、以至到低温运行时,会在Nb3Sn复合物中产生热应变。为了研究Nb3Sn的热应变和构建相应的数学模型,进行了加热期间局部应变测量以及室温下的拉力测试。根据Nb3Sn股线不同组分应力/应变曲线所显示的弹塑特性,对它们进行量化分析。测试分析发现,在室温下沿轴向加载到Nb3Sn超导丝的局部应变是压缩应变,高温下是拉应变;另外用数值分析计算方法可以再现依靠温度的轴向热应变。 The Nb3Sn superconducting strands used for ITER (international thermal-nuclear experimental reactor) consist of brittle intermetallic compounds. Due to the different coefficients of thermal expansion and different moduli of elasticity among the components, thermal strain is generated in the composite from heat treatment temperature down to room temperature, even to operating temperature (4.2 or 4.5 K). In order to research thermal strain and build the mathematic model of the Nb3Sn strands, local strain measurements during heating by means of quantum beams and tensile tests at room temperature were carried out. According to the elasto-plastic behavior of Nb3Sn revealed in the stress curves, the thermal strain was evaluated. The results show that the local strain exerted on superconducting (SC) filaments along the axial direction is compressive at room temperature and tensile at high temperatures. Moreover, the temperature dependence of thermal strain can be reproduced well by the numerical calculation method proposed in the paper
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2014年第6期1372-1376,共5页 Rare Metal Materials and Engineering
基金 国家磁约束核聚变能发展研究专项"973"计划项目(2014GB105001) 河南省高等学校青年骨干教师资助计划(2010GGJS-088) 河南省教育厅科学技术研究重点项目(14A510005)
关键词 Nb3Sn股线 CICC(Cable—in—conduit conductor) 热应变 Nb3Sn strands cable-in-conduit conductor (CICC) thermal strain
  • 相关文献

参考文献15

  • 1Dresener L. Journal of Fusion Energy[J], 1995, 14(1): 3.
  • 2Seeber B. Hand Book of Applied Superconductivity[M]. London: Institute of Physics Publication, 1998:265.
  • 3Yan L G. IEEE Transactions on Applied Superconductivity[J], 2010, 20(3): 123.
  • 4Ciazynski D. Fusion Engineering Design[J], 2007, 82(5-14): 488.
  • 5Nijhuis A, Lanen E P A V, Rolando G. Superconductor Science and Technology[J], 2012, 25(1): 015 007.
  • 6Markiewicz W D. Cryogenics[J], 2004, 44(12): 895.
  • 7Lu X F, Taylor D M J, Hampshire D Pet al. Superconductor Science and Technology[J], 2008, 21(10): 105 016.
  • 8Arbelaez D, Godeke A, Prestemon S Oet al. Superconductor Science and Technology[J], 2009, 22(2): 025 005.
  • 9Gen N, Kazuo W, Tadahiro Aet al. Cryogenics[J], 2005, 45(10): 653.
  • 10Zhang P X, Liang M, Tang X D et al. Physica C: Super- conductivity and Its Applications[J], 2008, 468(15-20): 1843.

同被引文献23

  • 1刘方,翁佩德,武玉,谭运飞.超导股线Nb_3Sn的性能测试研究[J].低温物理学报,2007,29(1):68-72. 被引量:12
  • 2Dresener L. Journal of Fusion Energy[J], 1995, 14(1): 3.
  • 3Seeber B. Hand Book of Applied Superconductivity[M]. London: Institute of Physics Publication, 1998:265.
  • 4Yan L G. IEEE Transactions on Applied Superconductivity[J], 2010, 20(3): 123.
  • 5Ciazynski D. Fusion Engineering Design[J], 2007, 82(5-14): 488.
  • 6Liu B, Wu Y, Liu F, Long F. Fusion Engineering Design[J], 2011, 86(1): 1.
  • 7Zhang P X, Liang M, Tang X D et al. Physica C[J], 2008,468(15-20): 1843.
  • 8ChengJunsheng(程军胜),WangQiuliang(王秋良).稀有金属材料与工程[J],2008,37(S4):189.
  • 9Bottura L, Luongo C. Superconductors, Stability in Forced Flow[M]. Wiley Encyclopedia of Electrical and Electronic Engineering, Milton: John Wiley & Sons, 1999:126.
  • 10刘勃,武玉,刘方,倪志鹏.Nb_3Sn超导股线残余应力分析[J].低温与超导,2009,37(2):36-38. 被引量:2

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部