期刊文献+

网络结构增长的极端学习机算法 被引量:4

Incremental constructive extreme learning machine
下载PDF
导出
摘要 针对极端学习机(extreme learning machine,ELM)结构设计问题,基于隐含层激活函数及其导函数提出一种前向神经网络结构增长算法.首先以Sigmoid函数为例给出了一类基函数的派生特性:导函数可以由其原函数表示.其次,利用这种派生特性提出了ELM结构设计方法,该方法自动生成双隐含层前向神经网络,其第1隐含层的结点随机逐一生成.第2隐含层的输出由第1隐含层新添结点的激活函数及其导函数确定,输出层权值由最小二乘法分析获得.最后给出了所提算法收敛性及稳定性的理论证明.对非线性系统辨识及双螺旋分类问题的仿真结果证明了所提算法的有效性. Focusing on the problem of architectural design of extreme learning machine (ELM), we propose a novel constructive algorithm by the activation function and its derivatives. Firstly, taking the Sigmoid function as an example, we give in detail the derived characteristics for a class of base functions: derivative functions can be expressed by their primitive functions. By making use of these derived characteristics, we propose a method to design the structure of ELM, which automatically generate feedforward neural networks with double hidden layers. The new units in the first hidden layer are generated randomly one by one; then, the outputs of the second hidden layer (derivation) are calculated by the activation function of the new node in the first layer and its derivatives. The weights of the output layer are calculated analytically by the least squares method. Finally, the analysis of convergence and stability are presented. The effectiveness of the proposed method is demonstrated by simulation results on nonlinear system identification and two-spiral classification problem.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2014年第5期638-643,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(61034008 61203099 61225016) 北京市自然科学基金资助项目(4122006) 教育部博士点新教师基金项目(20121103120020)
关键词 前向神经网络 极端学习机 导数 结构设计 feedforward neural networks extreme learning machine derivative architectural design
  • 相关文献

参考文献14

  • 1HUANG G B,ZHU Q Y,SIEW C K.Extreme learning machine:theory and applications[J].Neurocomputing,2006,70(1):489-501.
  • 2HUANG G B,CHEN L.Convex incremental extreme learning machine[J].Neurocomputing,2007,70(16):3056-3062.
  • 3LAN Y,SOH Y C,HUANG G B.Two-stage extreme learningmachine for regression[J].Neurocomputing,2010,73(16):3028-3038.
  • 4SUN Z L,NG K M,SOSZYNSKA-BUDNY J,et al.Application of the LP-ELM model on transportation system lifetime optimization[J].IEEE Transactions on Intelligent Transportation Systems,2011,12(4):1484-1494.
  • 5韩敏,王新迎.多元混沌时间序列的加权极端学习机预测[J].控制理论与应用,2013,30(11):1467-1472. 被引量:13
  • 6YEU C W T,LIM M H,HUANG G B,et al.A new machine learning paradigm for terrain reconstruction[J].IEEE Geoscience and Remote Sensing Letters,2006,3(3):382-386.
  • 7肖冬,王继春,潘孝礼,毛志忠,常玉清.基于改进PCA-ELM方法的穿孔机导盘转速测量[J].控制理论与应用,2010,27(1):19-24. 被引量:8
  • 8TEOH E J,TAN K C,XIANG C.Estimating the number of hidden neurons in a feedforward network using the singular value decomposition[J].IEEE Transations on Neural Networks,2006,17(6):1623-1629.
  • 9HUANG G B,CHEN L,SIEW C K.Universal approximation using incremental constructive feedforward networks with random hidden nodes[J].IEEE Transations on Neural Networks,2006,17(4):879-892.
  • 10HUANG G B,CHEN L.Enhanced random search based incremental extreme learning machine[J].Neurocomputing,2008,71(16):3460-3468.

二级参考文献49

  • 1张绍秋,胡跃明.基于BP神经网络的税收预测模型[J].华南理工大学学报(自然科学版),2006,34(6):55-58. 被引量:24
  • 2HUANG G B, ZHU Q Y, SlEW C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//Proceedings of the International Joint Conference on Neural Networks. Budapest, Hungary: IEEE, 2004:25 - 29.
  • 3ZHU Q Y, QIN A K, SUGANTHAN P N, et al. Evolutionary extreme learning machine[J]. Pattern Recognition, 2005, 38(2): 1759- 1763.
  • 4TAMURA S, TATEISHI M. Capabilities of a four-layered feedforward neural network: four layers versus three[J]. IEEE Transactions on NeuralNetworks, 1997, 8(2): 251 - 255.
  • 5HUANG G B. Learning capability and storage capacity of two-hidden-layer feedforward network[J]. IEEE Transactions on Neural Networks, 2003, 14(2): 274 - 281.
  • 6SERRE D. Matrices: Theory and Applications[M]. New York: Springer, 2002.
  • 7LIANG N Y, HUANG G B. A fast and accurate online sequential learning algorithm for feedforward networks[J]. IEEE Transactions on Neural Networks, 2006, 17(6): 1411 - 1423.
  • 8HUI C, MATS N, SIRKKA L. Evaluation of PCA methods with improved fault isolation capabilities on a paper machine simulator[J]. Chemometrics and Intelligent Laboratory Systems, 2008, 92(3): 186 - 199.
  • 9PENG D Z, ZHANG Y. Dynamics of generalized PCA and MCA learning algorithms[J]. IEEE Transactions on Neural Networks, 2007, 18(6): 1777- 1784.
  • 10BAFFI G, MARTIN E B, MORRIS A J. Non-linear projection to latent structures revisited: the neural network PLS algorithm[J]. Computers & Chemical Engineering, 1999, 23(9): 1293 - 1307.

共引文献24

同被引文献47

  • 1邵良杉,芦春霞.不同井型煤炭项目环境效益的生态折现率仿真[J].辽宁工程技术大学学报(自然科学版),2012,31(3):305-309. 被引量:5
  • 2邵良杉,张宇.基于小波理论的支持向量机瓦斯涌出量的预测[J].煤炭学报,2011,36(S1):104-107. 被引量:19
  • 3Mirea L.Fault Diagnosis Using Hybrid Wavelet/Elman Neural Netw orks[C]//Proceedings of the 15th International Conference on System Theory,Control,and Computing.Washington D.C.,USA:IEEE Press,2011:1-6.
  • 4Chandra R,Zhang Mengjie.Cooperative Coevolution of Elman Recurrent Neural Netw orks for Chaotic Time Series Prediction[J].Neurocomputing,2012,86(1):116-123.
  • 5Deng Jiamei.Dynamic Neural Networks with Hybrid Structures for Nonlinear System Identification[J].Engineering Applications of Artificial Intelligence,2013,26(1):281-292.
  • 6Frogerais P,Bellanger J,Senhadji L.Various ways to compute thecontinuous-discrete extended Kalman filter[J]. Automatic Control,IEEETransactions on,2012,57(4):1 000-1 004.
  • 7Mejri S,TIiIi A S,Braiek N B.On the state estimation of chaotic systemsby a particle filter and an extended Kalman filter[C]//Multi-Conferenceon Systems,Signals & Devices (SSD),2014 11th International.IEEE,2014:1-6.
  • 8Huang G B, Zhu Q, Siew C K. Extreme learning machine: Theory and applications[J]. Neurocomputing, 2006, 70 (1/2/3): 489-501.
  • 9Zong W, Huang G B. Face recognition based on extreme learning machine[J]. Neurocomputing, 2011, 74(16): 2541-2551.
  • 10Huang G B, Li M B, Chen L, et al. Incremental extreme learning machine with fully complex hidden nodes[J]. Neurocomputing, 2008, 71: 576-583.

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部