期刊文献+

水基氧化石墨烯悬浮液的等温结晶过程与过冷度实验研究

Experimental study on isothermal crystallization and supercooling degree of aqueous graphene oxide suspensions
下载PDF
导出
摘要 为研究水基氧化石墨烯悬浮液的浓度对其凝固过程和过冷度的影响,测试并得到了0 ~ 1000 mg/kg的不同浓度水基氧化石墨烯悬浮液的等温结晶曲线.结果表明,氧化石墨烯纳米颗粒的添加不仅能提高悬浮液的导热系数,亦可起到结晶成核剂的效果从而降低悬浮液的过冷度.随着浓度的增加,悬浮液的过冷度呈逐步减小的趋势,当浓度为750 mg/kg时悬浮液的过冷度较纯水可降低3℃以上,而当浓度增大到1000 mg/kg时悬浮液的过冷现象消失.此外,还采用T-history法对等温结晶曲线进行了分析并计算得到了有过冷工况下悬浮液的凝固潜热,发现少量氧化石墨烯的添加对水悬浮液的凝固潜热几乎没有影响. In an effort to investigate the effect of concentration of an aqueous graphene oxide suspension on its solidification and supercooling degree, aqueous graphene oxide suspensions of various concentrations from 0 to 1000 mg/kg were tested to obtain their isothermal crystallization curves. The results showed that the addition of graphene oxide nanoparti- cles is not only able to increase the thermal conductivity of the suspensions but also serves as the nucleation agents that reduce their supercooling degree. The supercooling degree of the suspensions was shown to gradually reduce with increasing the concentration. The maximum reduction of the supercooling degree, as compared to that of pure water, was found to be greater than 3℃ for the 750 mg/kg suspension, whereas the supercooling phenomenon disappeared when the concentration was increased to 1000 mg/kg. In addition, the T-history method was employed to analyze the isothermal crystallization curves. The latent heats of solidification of the suspensions were thus determined for cases with supercooling. It was shown that the addition of the minute amounts of graphene oxide nanoparticles has negligible influ- ence on the latents heat of solidification of the aqueous suspensions.
出处 《能源工程》 2014年第3期1-7,12,共8页 Energy Engineering
基金 国家自然科学基金资助项目(51276159 51206142 51106144) 中国博士后科学基金资助项目(2012M511362 2013T60589)
关键词 氧化石墨烯 水悬浮液 纳米材料 过冷度 等温结晶 相变 graphene oxide aqueous suspensions nanomaterials supercooling degree isothermal crystallization phase change
  • 相关文献

参考文献19

  • 1樊栓狮,谢应明,郭开华,梁德青,顾建明.蓄冷空调及气体水合物蓄冷技术[J].化工学报,2003,54(z1):131-135. 被引量:16
  • 2朱冬生,李新芳,汪南,王先菊.纳米流体相变蓄冷材料的基本特性与应用前景[J].材料导报,2007,21(4):87-91. 被引量:14
  • 3洪荣华,孙志坚,吴杰,陈坤,靳静.成核添加剂减小冰蓄冷溶液过冷度的实验研究[J].浙江大学学报(工学版),2005,39(11):1797-1800. 被引量:9
  • 4WU S, ZHU D, LI X, et al. Thermal energy storage behavior of Al2O3 -H2O nanofluids [ J ]. Thermochimica Acta ,2009,483 ( 1 ) :73 - 77.
  • 5LIU Y D, ZHOU Y G, TONG M W, et al. Experimental study of thermal conductivity and phase change performance of nanofluids PCMs [ J ]. Microfluidics and Nanofluidics,2009,7 (4) :579 - 584.
  • 6陈颖,贾莉斯,莫松平.纳米流体结晶过程的DSC法实验研究(英文)[J].Journal of Southeast University(English Edition),2010,26(2):359-363. 被引量:5
  • 7MO S, CHEN Y, LI X, et al. Solidification characteristics of titania nanofluids [ J ]. Journal of Thermophysics and Heat Transfer,2012,26( 1 ) : 192 - 196.
  • 8MARE T, SOW O, HALELFADL S, et al. Experimental study of the freezing point of γ-Al2O3/water nanofluid [ J]. Advances in Mechanical Engineering, 2012,2012 : 162961.
  • 9HE Q, WANG S, TONG M, et al. Experimental study on thermophysical properties of nanofluids as phasechange material (PCM) in low temperature cool storage[ J]. Energy Conversion and Management,2012,64 (1) :199 -205.
  • 10JIA L, CHEN Y, MO S. Solid-liquid phase transition of nanofluids [ J ]. International Journal of Heat and Mass Transfer,2013,59( 1 ) :29 - 34.

二级参考文献65

  • 1郭开华.气体水合及其在空调蓄冷技术中的应用[J].制冷,1994(2):22-28. 被引量:20
  • 2郭开华,舒碧芬.空调蓄冷及气体水合蓄冷技术[J].制冷,1995,14(4):15-21. 被引量:24
  • 3吴会军,朱冬生,李军,王春华,程军.蓄热材料的研究进展[J].材料导报,2005,19(8):96-98. 被引量:17
  • 4李文波,薛锋,丁恩勇,程时.差示扫描量热仪对物质相变潜热的精确量度[J].分析测试学报,2006,25(2):16-19. 被引量:7
  • 5[2]Salyer I O, Sircar A K. Development of Phase Change Technology for Heating and Cooling of Residential Building and Other Application. Proc. of the 28th IECEC. 1993, 2: 133-142
  • 6[4]Tomlinson J J. Heat Pump Cool Storage in a Clathrate of Freon. Proc. of the 17th IECEC. 1982, 4:2060-2064
  • 7[6]Masaru O, Shigetake K, Akiya T. Experiment Study on the Formation of R11 Hydrate. Trans. of the JAR (in Japanese),1987, 4 (3): 19-24
  • 8[7]Ternes M P. Studies on the R-12 Gas Hydrate Formation Process for Heat Pump Cool Storage Application. Proc. of DOE Physical and Chemical Energy Storage Annual Contractor's Review Meeting. 1983, CONF-830974
  • 9[8]Oowa M, Nakaiwa M, Akiya T. Formation of CFC Alternative R134a Gas Hydrate. Proc. 25th IECEC, 1990, 4:269-274
  • 10[9]Tanii T, et al. Novel Cool Storage System Using HCFC-141b Gas Clathrate. Proc. of the 26th IECEC, 1991, 3:3-9

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部