摘要
针对汽车连杆裂解槽人工检测工作量大、效率低且误差大的现状,提出一种基于机器视觉的汽车连杆裂解槽检测方法。该方法利用CCD摄像机获取检测图像,通过同态滤波技术滤除背景噪声以提高检测图像的质量,通过自适应阈值的Canny边缘检测方法提取有效边缘信息,通过圆形度和扁度对目标特征进行检测和识别,通过对汽车连杆进行实际检测来验证本文方法。实验结果表明:本文方法能够快速准确地实现汽车连杆裂解槽的自动检测识别,具有良好的检测效果。
In traditional manual detection of fracture splitting notch of auto connecting rod, the workload is heavy, the efficiency is low and the detecting error is big. To overcome these shortcomings, an improved machine vision inspection method is proposed. This method uses a CCD camera to obtain detection image, and filters out the background noise by homomorphic filtering technique to improve the quality of the detected images. It uses the self-adaptive threshold Canny edge detection method to extract the edge information. The target feature is recognized and judged by measuring its circularity and oblateness. The proposed method is verified by auto connecting rod detection experiment. Results show that using the proposed method can realize quick and accurate detection of auto connecting rod.
出处
《吉林大学学报(工学版)》
EI
CAS
CSCD
北大核心
2014年第4期1076-1080,共5页
Journal of Jilin University:Engineering and Technology Edition
基金
吉林省科技发展计划重点项目(20070315)
高等学校博士学科点专项科研基金项目(2011061110059)
关键词
自动化技术
汽车连杆
机器视觉
同态滤波
边缘检测
automatic technology
auto connecting rod
machine vision
homomorphic filtering
edge operator