期刊文献+

汽车连杆裂解槽视觉检测技术 被引量:4

Vision inspection technology of fracture splitting notch of auto connecting rod
下载PDF
导出
摘要 针对汽车连杆裂解槽人工检测工作量大、效率低且误差大的现状,提出一种基于机器视觉的汽车连杆裂解槽检测方法。该方法利用CCD摄像机获取检测图像,通过同态滤波技术滤除背景噪声以提高检测图像的质量,通过自适应阈值的Canny边缘检测方法提取有效边缘信息,通过圆形度和扁度对目标特征进行检测和识别,通过对汽车连杆进行实际检测来验证本文方法。实验结果表明:本文方法能够快速准确地实现汽车连杆裂解槽的自动检测识别,具有良好的检测效果。 In traditional manual detection of fracture splitting notch of auto connecting rod, the workload is heavy, the efficiency is low and the detecting error is big. To overcome these shortcomings, an improved machine vision inspection method is proposed. This method uses a CCD camera to obtain detection image, and filters out the background noise by homomorphic filtering technique to improve the quality of the detected images. It uses the self-adaptive threshold Canny edge detection method to extract the edge information. The target feature is recognized and judged by measuring its circularity and oblateness. The proposed method is verified by auto connecting rod detection experiment. Results show that using the proposed method can realize quick and accurate detection of auto connecting rod.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2014年第4期1076-1080,共5页 Journal of Jilin University:Engineering and Technology Edition
基金 吉林省科技发展计划重点项目(20070315) 高等学校博士学科点专项科研基金项目(2011061110059)
关键词 自动化技术 汽车连杆 机器视觉 同态滤波 边缘检测 automatic technology auto connecting rod machine vision homomorphic filtering edge operator
  • 相关文献

参考文献9

二级参考文献35

  • 1李钰,孟祥萍.自适应双阈值Canny算子的图像边缘检测[J].长春工程学院学报(自然科学版),2007,8(3):44-46. 被引量:12
  • 2王国凡,汤爱君,景财年,马海龙,霍玉霜.HT250灰口铸铁的退火工艺和性能试验[J].金属热处理,2004,29(9):44-45. 被引量:8
  • 3龚俊,芮执元,郎福元,魏庆同,靳伍银.激光催裂的初步研究[J].甘肃工业大学学报,1994,20(4):44-48. 被引量:17
  • 4MALAMAS E, PETRAKIS G M, ZERVAKIS M, et al. A survey on industrial vision system, applications and tools[J].Image and Vision Computing, 2003, 21 (2): 171 - 188.
  • 5NIKHIL R P, SANKAR K P. A review on image segmentation techniques [J].Pattern Recognition, 1993, 26(9): 1277-1294.
  • 6GELADI P, GRAHN H. Multivariate Image Analysis [M].Chichester U K: Wiley, 1996.
  • 7ESBENSEN KH, GELADI P. Strategy of multivariate image analysis[J]. Chemometries and Intelligent Laboratory Systems, 1989, 7(1 - 2) : 67 - 86.
  • 8BHARATI MH, MACGREGOR JF. Multivariate image analysis for real-time process monitoring and control[J]. Industrial & Engineering Chemistry Research, 1998, 37(12): 4715-4724.
  • 9BHARATI MH, MACGREGOR JF. Texture analysis of images using Principal Component Analysis[C].// SPIE/Photonics Conference on Process Imaging for Auto- matic Control. Boston, MA: SPIE,2000. 27-37.
  • 10BHARATI M H, MACGREGOR J F, TROPPER W. Softwood lumber grading through on-line multivariate image analysis techniques[J]. Industrial and Engineering Chemistry Research, 2003, 42(21) : 5345 - 5353.

共引文献113

同被引文献42

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部