期刊文献+

星形热弹性网络系统的稳定性及Riesz基性质

Stability and Riesz Basis of a Star-shaped Network of Thermoelasticities
下载PDF
导出
摘要 研究了一类星形弹性网络系统在热效应影响以及边界反馈作用下的稳定性问题及系统相应(广义)特征向量的Riesz基性质.基于Green和Naghdi第二类热弹性理论,假设在该热弹性系统中热以有限波速传播,并且在传播过程中无能量耗散.证明了该热弹性网络系统能量渐近衰减到零.并进一步通过系统算子谱分析,讨论得出该系统算子的(广义)特征向量构成状态空间的一组Riesz基. In this paper, we consider the stability and Riesz basis property of a star-shaped network of elastic strings with thermal effects and boundary feedback controls. The heat conduction in this system is decribed by the theory of thermoelasticity of type II proposed by Green and Naghdi, which is also known as "thermoelasticity without dissipation". We show that the total energy of this system decays to zero asymptotically. Moreover, we prove that there is a sequence of (generalized) eigenvectors of the system operator forming a Riesz basis with parentheses for the state space.
作者 王雷 韩忠杰
出处 《应用泛函分析学报》 CSCD 2014年第2期105-116,共12页 Acta Analysis Functionalis Applicata
基金 国家自然科学基金(61104130 61174080) 数学天元基金(11226244) 博士点新教师基金(20110032120074)
关键词 网络 热弹性 稳定性 RIESZ基 network thermoelasticity stability Riesz basis
  • 相关文献

参考文献21

  • 1Dafermos C M. On the existence and the asymptotic stability of solution to the equations of linear thermoelasticity[J]. Archive for Rational Mechanics and Analysis, 1968, 29(4): 241-271.
  • 2Rivera J E. Energy decay rates in linear thermoelasticty[J]. Funkcialaj Ekvacioj, 1992, 35: 19-30.
  • 3Green A E, Naghdi P M. Thermoelasticity without energy dissipation[J]. Journal of Elasticity, 1993, 31(3): 189-208.
  • 4Green A E, Naghdi P M. A re-examination of the basic postulates of thermomechanics[J]. Proc R Soc Lond Set A, 1991, 432: 171-194.
  • 5Green A E, Naghdi P M. On undamped heat waves in an elastic solid[J]. Journal of Thermal Stresses, 1992, 15(2): 253-264.
  • 6Messaoudi S A, Said-Houari B. Energy decay in a Timoshenko-type system of thermoelasticity of type Ⅲ[J]. Journal of Mathematical Analysis and Applications, 2008, 348(1): 298-307.
  • 7Leseduavte M C, Magana A, Quintanilla R. On the time decay of solutions in porous-thermo-elasticity of type Ⅱ[J]. Discrete and Continuous Dynamical Systems Series B, 2010, 13(2): 375-391.
  • 8Djebabla A, Tatar N. Exponential stabilization of the Timoshenko system by a thermo-viscoelastic damp- ing[J]. Journal of Dynamical and Control Systems, 2010, 16(2): 189-210.
  • 9Han Z J, Xu G Q, Tang X Q. Stability analysis of a thermo-elastic system of type Ⅱ with boundary viscoelastic damping[J]. Zeitschrift fur Angewandte Mathematik und Physik, 2012, 63(4): 675-689.
  • 10Liu Z Y, Quintanilla R. Energy decay rate of a mixed type Ⅱ and type Ⅲ thermoelastic system[J]. Discrete and Continuous Dynamical Systems Series B, 2010, 14(4): 1433-1444.

二级参考文献2

  • 1W. Littman,L. Markus. Stabilization of a hybrid system of elasticity by feedback boundary damping[J] 1988,Annali di Matematica Pura ed Applicata(1):281~330
  • 2Walter Littman,Lawrence Markus. Exact boundary controllability of a hybrid system of elasticity[J] 1988,Archive for Rational Mechanics and Analysis(3):193~236

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部