期刊文献+

不同推荐系统输入的聚类实现 被引量:2

Aggregation Analysis of Different Recommendation Input
下载PDF
导出
摘要 论文在分析推荐输入瓶颈问题的基础上,借助社区思想实现了显式评分输入的用户聚类,解决了评分矩阵稀疏的问题;借助用户兴趣度的定义,实现了隐式浏览输入的用户聚类,解决了用户兴趣度不易获取的问题.论文的研究立足于推荐系统的输入,通过聚类分析,为推荐算法的研究奠定了理论基础. Based on the analysis the bottleneck of recommendation input, aggregation analysis is researched in this paper. In order to ensure the recommended coverage rate, sociality ideological is used to user aggregation in explicit navigation. In order to solve the problem of user interest level, user interest level is defined in implicit navigation. Based on the recommendation input, I laid the theoretical foundation for the research of recommendation algorithm.
作者 崔春生
出处 《应用泛函分析学报》 CSCD 2014年第2期121-128,共8页 Acta Analysis Functionalis Applicata
基金 河南省社科规划办项目(2013BJJ061) 河南省科技厅软科学项目(142400410313) 河南省教育厅科学技术研究重点项目(14A630013)
关键词 推荐系统 显式评分输入 隐式浏览输入 用户兴趣度 稀疏矩阵 聚类分析 recommender systems explicit navigation implicit navigation user interest level sparse matrix aggregation analysis
  • 相关文献

参考文献16

  • 1Resnick P, Iakovou N, Sushak M E. GroupLens: An open architecture for collaborative filtering of net- news[M]. Chapel Hill, 1994.
  • 2Hill W, Stead L, Rosenstein M E. Recommending and evaluating choices in a virtual community of use[M]. New York: ACM Press, 1995.
  • 3崔春生.基于集团序方法的推荐系统输出[J].系统工程理论与实践,2013,33(7):1845-1851. 被引量:22
  • 4马辉民,周凤林.电子商务下的柔性推荐系统[J].武汉理工大学学报(信息与管理工程版),2007,29(2):119-122. 被引量:9
  • 5许海玲,吴潇,李晓东,阎保平.互联网推荐系统比较研究[J].软件学报,2009,20(2):350-362. 被引量:544
  • 6Marko B Y S. FAB: Content-based collaborative recommendation[J]. Communication of the ACM, 1997, 40(3): 66-72.
  • 7Basu C, Hirsh H C W. Recommendation as classification: Using social and content based information in recommendation[M]. Menlo Park: AAAI Press, 1998.
  • 8Claypool M, Gokhale A, Miranda T. et al. Combining content-based and collaborative filters in an online newspaper[M]. New York: ACM Press, 1999.
  • 9M P. A framework for collaborative, content-based, and demographic filtering[J]. Artificial Intelligence Rev, 1999, 13(5-6): 393-408.
  • 10王霞.电子商务推荐系统评述[J].福建电脑,2006,22(8):60-61. 被引量:3

二级参考文献143

共引文献584

同被引文献15

  • 1张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题[J].计算机研究与发展,2006,43(4):667-672. 被引量:85
  • 2SCHAFER. J, KONSTAN J, RIEDL J. Recommender systems in e-commerce [C]// Proceedings of ACM E-Commerce, 1999: 158-166.
  • 3LINDEN G, SMITH B, YORK J. Amazon.corn recommendations: item-to-item collaborative filter- ing [J]. IEEE Internet Computing, 2003, 7(1): 76-80.
  • 4L1 D, LO Q. Interest-based real-time content recommendation in online social communities [J]. Knowledge Based System, 2012, 28(1): 1-12.
  • 5YANG X W, Guo Y, LIU Y. Bayesian-inference based recommendation in online social networks [J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 24(4): 1-13.
  • 6KIM B M, LI Q, PARK C S. A new approach for combining content-based and collaborative filters [J]. Journal of Intelligent Information Systems, 2006, 27(1): 79-91.
  • 7HWANG C S, CHANG T S. Genetic K-means collaborative filtering for multi-criteria recommen- dation [J]. Journal of Computational Information Systems, 2012, 8(1): 293-303.
  • 8BLANCO-FERNANDEZ Y, LOPEZ-NORES M, PAZOS-ARIAS J J. An improvement for semantics- based recommender systems grounded on attaching temporal information to onto logics and user profiles [J]. Engineering Applications of Artificial Intelligence, 2011, 24(8): 1385-1397.
  • 9AHN H J. A new similarity measure for collaborative filtering to alleviate the new user cold- starting problem[J]. Information Sciences, 2008, 178(1): 37-51.
  • 10ZHANG C J, ZENC A. Behavior patterns of online users and the effect on information filtering [J]. Physica A, 2012, 391(4): 1822-1830.

引证文献2

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部