摘要
本文在L_P(1≤p<+∞)空间上,研究了种群细胞增生中一类具扰动项的L-R模型,证明了这类模型相应的迁移算子生成半群的Dyson-Phillips展式的9阶余项R_9(t)在L_1空间上是弱紧和在L_p,(1<p<+∞)空间上是紧的,从而获得了该迁移算子的谱在右半平面上仅由有限个具有限代数重数的离散本征值组成及该迁移方程解的渐近稳定性等结果.
The objective of this paper is to research the L-R model with perturbation term of cell populations in Lp(1≤P〈+∞) space, it is to prove that the ninth-order remainder term Rg(t) of the Dyson-Phillips expansion of the transport operators generates semigroup for this model is weakly compact on L1 and is compact on (1〈P〈+∞), it is to obtain that the spectrum of the transport operators only consisting of finitely isolate eigenvalues with finite algebraic multiplicities in the right half plane and the stability of the transport equation solution and so on.
出处
《应用泛函分析学报》
CSCD
2014年第2期160-166,共7页
Acta Analysis Functionalis Applicata
基金
江西省自然科学基金(2010GZC0186
20132BAB201002)
江西省教育厅科技资助项目(GJJ13706)
关键词
种群细胞
L—R模型
迁移方程
余项的紧性
谱问题
cell population
L-R model
transport equation
compact property of remainder term
spectral problem