期刊文献+

具扰动项的L-R型迁移方程的谱问题 被引量:2

Spectral Problem of Transport Equation in L-R Model with Perturbation Term
下载PDF
导出
摘要 本文在L_P(1≤p<+∞)空间上,研究了种群细胞增生中一类具扰动项的L-R模型,证明了这类模型相应的迁移算子生成半群的Dyson-Phillips展式的9阶余项R_9(t)在L_1空间上是弱紧和在L_p,(1<p<+∞)空间上是紧的,从而获得了该迁移算子的谱在右半平面上仅由有限个具有限代数重数的离散本征值组成及该迁移方程解的渐近稳定性等结果. The objective of this paper is to research the L-R model with perturbation term of cell populations in Lp(1≤P〈+∞) space, it is to prove that the ninth-order remainder term Rg(t) of the Dyson-Phillips expansion of the transport operators generates semigroup for this model is weakly compact on L1 and is compact on (1〈P〈+∞), it is to obtain that the spectrum of the transport operators only consisting of finitely isolate eigenvalues with finite algebraic multiplicities in the right half plane and the stability of the transport equation solution and so on.
出处 《应用泛函分析学报》 CSCD 2014年第2期160-166,共7页 Acta Analysis Functionalis Applicata
基金 江西省自然科学基金(2010GZC0186 20132BAB201002) 江西省教育厅科技资助项目(GJJ13706)
关键词 种群细胞 L—R模型 迁移方程 余项的紧性 谱问题 cell population L-R model transport equation compact property of remainder term spectral problem
  • 相关文献

参考文献10

  • 1Lebowitz J L, Rubinow S I. A theory for the age and generation time distribution of a microbial popula- tion[J]. J Math Biol, 1974, 1: 17-36.
  • 2王胜华,程国飞.一类增生扩散型种群细胞中迁移方程的谱问题[J].数学物理学报(A辑),2013,33(1):71-77. 被引量:24
  • 3Boulanouar M. A mathematical analysis of a model of structured population (Ⅱ) [J]. Journal of Dynamical and Control Systems, 2012, 18(4): 499-527.
  • 4王胜华,吴军建.种群细胞增生中迁移方程的研究进展[J].上饶师范学院学报,2011,31(6):7-11. 被引量:5
  • 5Boulanouar M. A model of proliferating cell populations with infinite cell cycle length: Semigroup exis- tence[J]. Acta Appl Math, 2010, 109: 949-971.
  • 6Boulanouar M. A model of proliferating cell populations with infinite cell cycle length: Asymptotic behavior[J]. Acta Appl Math, 2010, 110: 1105-1126.
  • 7Latracha K, Megdiche H. Time asymptotic behaviour for Rotenberg's model with maxwell boundary conditions[J]. Discrete and Continous Dynamical Systems, 2011, 29(1): 305-321.
  • 8Latrach K, Megdiche H, Taoudi M A. Compactness properties for perturbed semigroups in Banach spaces and application to a transport model[J]. J Math Anal Appl, 2009, 359: 88-94.
  • 9Boulanouar M. Transport equation in cell population dynamics Ⅱ[J]. Electronic Journal of Differential Equation, 2010, 145: 1-20.
  • 10王胜华,翁云芳,阳名珠.人体细胞增生中一类迁移算子的谱分析[J].数学物理学报(A辑),2010,30(4):1055-1061. 被引量:34

二级参考文献21

  • 1王胜华,程国飞.种群细胞中一类具非光滑边界条件的L-R模型[J].应用泛函分析学报,2013,15(2):151-156. 被引量:4
  • 2Jeribi A, Megdiche H Moalla N. On a transport arising in growing cell populations II Cauchy problem. Math Methods in the Applied Sciences, 2005, 28:127-145.
  • 3Latrach K, Mokhtar-Kharroubi M. On an unbounded linear operator arising in the theory of growing cell population. J Math Anal Appl, 1997, 211:273-294.
  • 4Boulanouar M. A mathematical study for a Rotenberg model. Math Anal Appl, 2002, 265:371-394.
  • 5Jeribi A. Time asymptotic behaviour for unbounded linear operator arising in growing cell populations. Nonlinear Analysis: Real World Appl, 2003, 4:667-688.
  • 6Lods B, Mokhtar-Kharroubi M. On the theory of a growing cell population with zero minimum cycle length. J Math Anal Appl, 2002, 266:70-99.
  • 7Mokhtar-Kharroubi M. Time asymptotic behaviour and compactness in nertron transport theory. Europ J Mech B Fluid, 1992, 11:39-68.
  • 8Lebowitz J L, Rubinow S I. A theory for the age and generation time distribution of a microbiM population. J Math Biol, 1974, 1:17-36.
  • 9Webb G. A mode of proliferating cell populations with inherited cycle length. J Math Biol, 1986, 23: 269-282.
  • 10Webb C. Dynamics of structured populations with inherited properties. Comput Math Appl, 1987, 13: 749-757.

共引文献41

同被引文献12

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部