期刊文献+

基于数学模型的药物成分肾毒性预测 被引量:8

Predicting nephrotoxicity of drugs using mathematical models
原文传递
导出
摘要 目的:探索使用定量结构-活性关系(quantitative structure-activity relationship,QSAR)模型预测中药成分肾毒性。方法:从西药不良反应数据库(side effect resource,SIDER)收集得到了876个化合物(有肾毒不良反应记录的344个,无肾毒不良反应记录的532个),在对其描述符计算、挑选后,利用k近邻算法和支持向量机算法进行模型构建,然后用22个中药成分作为外部测试集进行模型验证评价。结果:利用k近邻算法当参数k为1时构建的模型对有肾毒数据集具有较好的预测能力,其对外部测试集中有肾毒成分的预测准确率也最高,达到64.29%。支持向量机算法构建的模型虽然有较高的自身预测准确率(80.25%),但是其对外部测试集的预测准确率仅有45.45%。结论:采用k近邻算法构建的模型对外部测试集22个中药成分具有较好的预测能力。 Objective: To establish computer models for the prediction of nephrotoxicity of small molecule drugs. Methods: Totally 876 small molecule drugs were collected from side effect resource (SIDER) database. Of these drugs 344 had adverse reactions related to nephrotoxicity, and the remaining drugs had no adverse reactions of nephrotoxicity. The predicting models by k-nearest neighbor (KNN) and support vector machine (SVM) were es- tablished based on calculation and selection of 2D descriptors. Twenty-two compounds from traditional Chinese medicines (TCM) were used as a test set to evaluate the prediction accuracy of the models. Results: The KNN model, if k = 1, had better accuracy for the training set itself, and also had the highest accuracy of 64.29% for the test set. The SVM model had an accuracy of 80.25% for the training set, but had a low accuracy, only 45.45% , for the test set. Conclusion: The KNN model of k = 1 can predict the nephrotoxicity of 22 TCM compounds with reasonable accuracy.
出处 《中国新药杂志》 CAS CSCD 北大核心 2014年第13期1565-1568,1578,共5页 Chinese Journal of New Drugs
基金 国家自然科学基金(81173652) 国家"重大新药创制"科技重大专项课题(2009ZX09502-002) 国家重点基础研究发展计划(2009CB522807)
关键词 肾毒预测 定量结构-活性关系 K近邻算法 支持向量机算法 predicting nephrotoxicity QSAR k-nearest neighbor support vector machine
  • 相关文献

参考文献16

  • 1PFALLER W, GSTRAUNTHALER G. Nephrotoxicity testing in vitro-what we know and what we need to know [ J]. Environ Health Perspect, 1998,106 ( Suppl 2 ) : S559 - S569.
  • 2FOURCHES D, BARNES JC,DAY NC,et al. Cheminformaties a- nalysis of assertions mined from literature that describe drug-in- duced liver injury in different species[ J]. Chem Res Toxicol, 2010,23(1) :171 -183.
  • 3EKINS S,WILLIAMS AJ,XU JJ. A predictive ligand-based bayes- ian model for human drug-induced liver injury[ J]. Drug Metab Dispos,2010,38 ( 12 ) :2302 - 2308.
  • 4KUHN M, CAMPILLOS M, LETUNIC I, et al. A side effect re- source to capture phenotypic effects of drugs[ J ].Mol Syst Biol,2010,6:343.
  • 5HONG H, XIE Q, GE W, et al. Mold (2) , molecular descriptors from 2D structures for chemoinformatics and toxicoinformatics [ J]. J Chem lnf Model,2008,48 (7) : 1337 - 1344.
  • 6GEISSER S. The predictive sample reuse method with applica- tions[J]. J Am Stat Assoc,1975 ,70( 350 ) :320 - 328.
  • 7ALTMAN NS. An Introduction to kernel and nearest-neighbor nonparametric regression [ J ]. Am Star, 1992,46 ( 3 ) : 175 - 185.
  • 8PRESS H,TEUKOLSKY A, VETTERLING T,et al. Numerical recipes:The art of scientific computing [ M ]. Third Edition. New York : Cambridge University Press,2007:883 - 892.
  • 9R CORE TEAM. R:A language and environment for statistical computing [ CP/OL ]. Vienna, Austria : R Foundation for Statistical Computing. http://www. R-project. org/.
  • 10VENABLES WN,RIPLEY BD. Modern applied statistics with S [ M ]. Fourth Edition. New York : Springer,2002 : 344 - 346.

二级参考文献54

  • 1张陆勇,江振洲,濮存海,严明.大黄总蒽醌对SD大鼠灌胃给药的长期毒性研究[J].中国生化药物杂志,2004,25(4):206-209. 被引量:45
  • 2高大文,王鹏.松花江水中有机化学品的生物毒性预测[J].哈尔滨商业大学学报(自然科学版),2004,20(5):549-551. 被引量:2
  • 3HuiDong Fu-ErLu Zhi-QiangGao Li-JunXu Kai-FuWang XinZou.Effects of emodin on treating murine nonalcoholic fatty liver induced by high caloric laboratory chaw[J].World Journal of Gastroenterology,2005,11(9):1339-1344. 被引量:28
  • 4王斌,余刚,张祖麟,胡洪营,王连生.烷基醇化合物的定量结构活性相关及联合毒性预测[J].科学通报,2006,51(13):1513-1518. 被引量:8
  • 5Li W, Cai S, Cai L, et al. Anti-apoptotic effect of hepatocyte growth factor from actinomycin D in hepatocyte-derived HL7702 cells is associated with activation of P[3K/Akt signaling[J] Toxicol Lett, 2006,20,165(2): 142-148.
  • 6Sohn SH, Ko E, Chung HS, et al. The genome wide expression profie of Curcuma longa-treated cisplatin-stimulated HEK293 ceils [J]. Br J Clin Pharmacol, 2010, 70(4): 547-556.
  • 7Bhandari PdN, Riccalton LA, Lewis AL, et al. Liver tissueengineering: a role for co-culture systems in modifying hepatocyte function and viability[J]. Tissue Eng, 2001,7(3): 345 357.
  • 8KAVLOCK RJ, DIX DJ, HOUCK KA, et al. ToxCastTM: Developing predictive signatures for chemical toxicity [ C ]. Procedding of the 6th World Congress on Alternatives & Animal Use in the Life Sciences. Tokyo, Japanese Society for Alternatives to Animal Experiments ( JSAAE), 2007 : 623 - 627.
  • 9MOHAN CG. Impact of computational structure-based predictive toxicology in drug discovery [ J ]. Comb Chem High Throughput Screen, 2011, 14(5) : 417 -426.
  • 10NESTLER EJ. Molecular mechanisms of drug addiction [ J ]. Neuropharmacology, 2004, 47 ( Suppl 1 ) : 24 - 32.

共引文献63

同被引文献183

引证文献8

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部