期刊文献+

拟南芥F-box基因At5g22700的功能初步分析 被引量:7

A Functional Analysis of F-box Gene At5g22700 in Arabidopsis
下载PDF
导出
摘要 F-box蛋白作为SCF(Skp1,Cullin and an F-box protein)复合体的成员,参与调节植物的生长发育过程。At5g22700为功能未知的F-box基因家族成员。本研究通过酵母双杂交分析At5g22700蛋白与ASK(Arabidopsis-SKP1-like)家族蛋白的相互作用,发现At5g22700蛋白的F-box结构域与ASK4蛋白相互作用。实时定量PCR分析该基因在不同组织器官中的表达,发现该基因在根和花中的表达量最高,说明At5g22700可能在根和花的发育中具有重要作用。以At5g22700基因的T-DNA插入突变体和过量表达转基因株系为材料,分析不同光照条件下幼苗的表型,发现蓝光下At5g22700过量表达转基因幼苗的主根比野生型长。这些研究结果表明,At5g22700在植物体内可能形成SCF复合体,并在植物幼苗主根伸长生长中起促进作用。 F-box protein, as one component of SCF ubiquitin-ligase ( Skpl, Cullin and an F-box protein) complex, is involved in the growth and development of plant. At5g22700 is a member of the F-box gene family, and its function is unclear. In this study, we found that the F-box domain of At5g22700 protein interacted with ASK4 (Arabidopsis-SKP1- like 4) in yeast two hybrid assay, qPCR (quantitative real-time PCR) analysis results showed that At5g22700 expressed in all tested tissues with higher expression levels in root and flower in Arabidopsis, indicating that At5g22700 may play roles in root and flower development. The phenotype of At5g22700 overexpressing transgenic lines and T-DNA insertion mutant were then analysed. When grown in blue light, the transgenic seedlings showed longer primary root length than that of the wild type. These results suggested that At5g22700 might form an SCF complex,and play an important role in promoting primary root elongation.
出处 《激光生物学报》 CAS CSCD 2014年第2期140-146,共7页 Acta Laser Biology Sinica
基金 国家自然科学基金项目(31171176) 省自然科学基金项目(11JJA002)
关键词 拟南芥 F-box基因 At5g22700 主根伸长 Arabidopsis F-box gene At5g22700 primary root elongation
  • 相关文献

参考文献4

二级参考文献135

  • 1Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998; 67:425-479.
  • 2Smalle J, Vierstra RD. The ubiquitin 26S proteasome proteolytic pathway. Annu Rev Plant Bio12004; 55:555-590.
  • 3Pickart CM. Mechanisms underlying ubiquitination. Annu Rev Biochem 2001; 70:503-533.
  • 4Moon J, Parry G, Estelle M. The ubiquitin-proteasome pathway and plant development. Plant Cell 2004; 16:3181-3195.
  • 5Sullivan JA, Shirasu K, Deng XW. The diverse roles of ubiquitin and the 26S proteasome in the life of plants. Nat Rev Genet 2003; 4:948-958.
  • 6Reyes-Turcu FE, Ventii KH, Wilkinson KD. Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 2009; 78:363-397.
  • 7Finley D. Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 2009; 78:477- 513.
  • 8Vierstra RD. The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Bio12009; 10:385-397.
  • 9Elsasser S, Chandler-Militello D, Muller B, Hanna J, Finley D. Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 2004; 279:26817-26822.
  • 10Husnjak K, Elsasser S, Zhang N, et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 2008; 453:481- 488.

共引文献43

同被引文献55

引证文献7

二级引证文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部