期刊文献+

沉积物-水界面通量测定中热脉冲信号分析(英文)

Analysis of heat pulse signals determination for sediment-water interface fluxes
下载PDF
导出
摘要 分析了热脉冲传感器脉冲信号与沉积物-水界面通量之间的传热问题,并通过优化程序,提出了用热脉冲测定计算界面通量J的新方法.此分析方法只需3个实验参数,即x0,λ和(pc)l就可利用热脉冲测定数据计算出沉积物-水界面通量J.数据分析结果表明:热脉冲顶点温度到达时间与水流速度呈曲线关系;沉积物-水界面通量和热源上下游温升比值的自然对数之间存在一种简单的线性关系.这种简单的线性关系,有利于热脉冲型传感器在土壤-水界面通量测定中的广泛应用. The heat pulse signal is analyzed in a new way with the goals of clarifying the relationships between the variables in the heat transfer problem and simplifying the procedure for calculating sediment-water interface fluxes J. Only three parameters x0 λand pc l are needed to calculate J by the heat pulse data for this analysis method.The results show that there is a curvilinear relationship between the peak temperature arrival time and sediment-water interface fluxes and there exists a simple linear relationship between sediment-water interface fluxes and the natural log of the ratio of the temperature increase downstream from the line heat source to the temperature increase upstream from the heat source.The simplicity of this relationship makes the heat pulse sensors an attractive option for measuring soil water fluxes.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2014年第2期192-196,共5页 东南大学学报(英文版)
基金 The Priority Academic Program Development of Jiangsu Higher Education Institutions
关键词 沉积物-水界面通量 渗流仪 热脉冲 顶点温度到达时间 sediment-water interface flux seepage meter heat pulse peak arrival time
  • 相关文献

参考文献13

  • 1Lien B K. Development and demonstration of a bidirec- tional advective flux meter for sediment-water interface [ R]. Cincinnati, OH, USA: National Risk Management Research Laboratory, Office of Research and Develop- ment, US Environmental Protection Agency, 2006:12- 40.
  • 2Smith A J, Heine D E, Turner J V. Wave effects on submarine groundwater seepage measurement [J ]. Ad- vances in Water Resources, 2009, 32(6) : 820-833.
  • 3Mwashote B, Burnett W, Chanton J, et al. Calibration and use of continuous heat-type automated seepage meters for submarine groundwater discharge measurements [ J ]. Estuarine, Coastal and Shelf Science, 2010, 87( 1 ) : 1 - 10.
  • 4Swarzenski P W, Izbicki J A. Coastal groundwater dy- namics off Santa Barbara, California: combining geo- chemical tracers, electromagnetic seepmeters, and electri- cal resistivity [ J ]. Estuarine, Coastal and Shelf Science, 2009, 83 ( 1 ) : 77 - 89.
  • 5Byrne G, Drummond J, Rose C. A sensor for water flux in soil. "Point source" instrument [ J ]. Water Resources Research, 1967, 3(4) : 1073 - 1078.
  • 6Byrne G, Drummond J, Rose C. A sensor for water flux in soil. 2. "Line source" instrument [ J ]. Water Re- sources Research, 1968, 4(3) : 607-611.
  • 7Melville J G, Molz F J, Gtiven O. Laboratory investiga- tion and analysis of a ground-water flowmeter [ J ]. Ground Water, 1985, 23(4): 486-495.
  • 8Ren T, Kluitenberg G, Horton R. Determining soil water flux and pore water velocity by a heat pulse technique [ J ]. Soil Science Society of America Journal, 2000, 64 (2) : 552 - 560.
  • 9Wang Q, Ochsner T E, Horton R. Mathematical analysis of heat pulse signals for soil water flux determination [ J ]. Water Resources Research, 2002, 38(6): 27-1-27-7.
  • 10Kluitenberg G, Warrick A. Improved evaluation proce- dure for heat-pulse soil water flux density method [ J ]. Soil Science Society of America Journal, 2001, 65 (2) : 320 - 323.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部