期刊文献+

频域积累与EMD去噪结合的微动信号检测算法 被引量:2

Micro-tremor Signal Detection Algorithm Based on Frequency Domain Cumulation Combined with EMD De-noising
原文传递
导出
摘要 超宽带生命探测雷达具有穿透能力强、距离分辨率高、抗干扰能力强等诸多优点,在防暴、救援、反恐等领域有很高的使用价值。由于穿墙生命探测雷达回波信号具有杂波干扰严重,且生命信号与背景噪声相互交叠等特点,利用传统数字滤波方法无法有效检测人体微动信号。针对此问题,本文提出一种利用频域积累与经验模态分解(EMD)相结合的人体微动信号检测算法,利用频域积累提高回波信号的信噪比,利用EMD方法进行进一步的去噪处理。该算法不仅具有频域积累可以有效提高信噪比的优点,而且具有EMD方法自适应分解信号的能力。同时,它克服了在低信噪比情况下,频域积累实时性不强,以及EMD方法不能有效去除杂波的缺点。仿真和实验证明,该算法既可以有效提高雷达回波信号的信噪比,又可以改善单纯使用频域积累实时性不强的缺点,利用该算法对雷达回波信号进行处理可以准确快速地检测出人体的呼吸频率,是一种很好的穿墙雷达微弱信号检测新方法。 Uhra-wideband (UWB) life detection radar has found wide applications in anti-riot, rescue, and anti-terrorism actions due to its many advantages, such as strong penetrating ability, high distance resolution, and strong anti-interference ability. Therefore, research on human micro-tremor signal detection using UWB through-wall radar has much significance. As the echo signal of through-wall life detection radar is interfered by background noise clutter, the conventional method using the digital filter cannot effectively detect human micro-tremor signal. To solve this problem, this paper presents a human body micro-tremor signal detection algorithm. First, the frequency domain cumulation is used to increase the signal-to-noise ratio (SNR) of the echo signal, and then EMD is used for de-noising. This algorithm not only has the advantages of frequency domain cumulation, but also has the ability of EMD method for adaptive decomposition. Under low SNR, it overcomes the disadvantages of frequency domain cumulation and EMD method, the former being not real-time and the latter having ineffective clutter remove. The simulation results show that the algorithm not only improves the SNR of the radar echo signal, but also overcomes the disadvantage of frequency domain cumulation. The frequency of human respiration can be rapidly and accurately detected by processing the echo signal using this algorithm, which is a novel method for through-wall radar detection of weak signals.
出处 《科技导报》 CAS CSCD 北大核心 2014年第19期36-42,共7页 Science & Technology Review
基金 国家自然科学基金项目(61162007) 广西自然科学基金项目(2013GXNSFAA019323) 桂林科技攻关项目(20130102-5)
关键词 超宽带生命探测雷达 微动信号提取 频域积累 经验模态分解 uhra-wideband life detection radar micro-tremor signal detection frequency domain cumulation empirical mode decomposition
  • 相关文献

参考文献13

  • 1Li C, Cummings J, Lam J, et al. Radar remote monitoring of vital signs [J]. Microwave Magazine, IEEE, 2009, 10(1): 47-56.
  • 2Staderini E M. UWB radars in medicine[J]. IEEE Aerospace and Electronic Systems Magazine, 2002, 17(1): 13-18.
  • 3潘水洋,吴晶,李烨.冲激超宽带雷达生命信号提取的新方法[J].微波学报,2010,26(6):36-41. 被引量:6
  • 4张洋,王健琪,荆西京,吕昊.HHT在生物雷达回波信号噪声抑制中的应用[J].医疗卫生装备,2012,33(5):14-17. 被引量:4
  • 5Boric-Lubecke O, Lubecke V M, Mostafanezhad I, et al. Doppler radar architectures and signal processing for heart rate extraction[J]. Mikrotalasna Revija, 2009, 15(2): 12-17.
  • 6魏崇毓,李玲娟,朱卫娟.一种弱信号检测新方法分析[J].现代电子技术,2012,35(5):60-64. 被引量:5
  • 7Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non- stationary time series analysis[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995.
  • 8Lai C P, Ruan Q, Narayanan R M. Hilbert-huang transform (HHT) analysis of human activities using through-wall noise radar[C]// International Symposium on Signals, Systems and Electronics, 2007 (ISSSE'07), Montreal, Canada, July 30-August 2, 2007:115-118.
  • 9倪安胜,王健琪,杨国胜,王海滨,路国华,荆西京,朱新亚.基于FFT频域积累的非接触生命参数信号检测[J].第四军医大学学报,2003,24(2):172-175. 被引量:16
  • 10Singleton R C. An algorithm for computing the mixed radix fast Fourier transform[J]. IEEE Transactions on Audio and Electroacoustics, 1969, 17(2): 93-103.

二级参考文献52

  • 1肖建峰,黄培康,文树梁.宽带Chirp雷达回波相干积累方法[J].现代雷达,2008,30(12):35-38. 被引量:6
  • 2焦光龙,冯存前,丁前军.基于小波分解的超宽带雷达去噪方法[J].空军工程大学学报(自然科学版),2005,6(2):66-68. 被引量:6
  • 3王健琪,郑崇勋,路国华,荆西京.雷达式生命探测仪中人体与动物识别技术的研究[J].生物医学工程学杂志,2005,22(6):1161-1164. 被引量:12
  • 4Li C Z, Cummings J, Lam J, et al. Radar remote moni- toring of vital signs [ J]. IEEE Microwave Magazine, 2009, 10( 1 ) :47-56.
  • 5Staderini E M. UWB Radars in Medicine[J]. IEEE Aer- ospace and Electronic Systems Magazine, 2002, 17 (1) : 13-18.
  • 6Yarovoy A G, Ligthart L P, Matuzas J, et al. UWB radar for human being detection [ J ]. IEEE Aerospace and E- lectronic Systems Magazine, 2008, (23) 5 : 36-40.
  • 7Venkatesh S C, Anderson N V, Rivera, et al. Implemen- tation and analysis of respiration-rate estimation using im- pulse-based UWB [ C ]. IEEE Military Communications Conference, Atlantic City, USA, 2005. 3314-3320.
  • 8Thiel F, Seifert F. Noninvasive probing of the human body with electromagnetic pulses : Modeling of the signal path[J]. Journal of Applied Physics, 2009, 105 (4) : 1-8.
  • 9Immoreev I, Ivashov S. Remote monitoring of human car- diorespiratory system parameters by radar and its applica- tions [ C ]. 4th International Conference on Ultra-wide- band and Ultra short Impulse Signals, Sevastopol, U- kraine, 2008. 34-38.
  • 10Ossberger G, Buchegger T, Schimback E, et al. Non-in- vasive respiratory movement detection and monitoring of hidden humans using ultra wideband pulse radar[ C ]. In- ternational Workshop on Ultra Wideband Systems, Kyoto, Japan, 2004. 395-399.

共引文献32

同被引文献14

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部