摘要
Based on a submicrometer-sized SiGe-SOI waveguide, the coupling loss mechanism is analyzed between the submicrometer-sized SiGe-SOI waveguide and the fiber. The main sources of coupling loss are analyzed, and the mismatch loss of the mode field is the mainly lost during connection between the submicrometer-sized waveguide and the fiber. In order to reduce the mismatch loss of the mode field, the structure ofa nanotaper SiGeSOI waveguide with a nanometer-sized tip is adopted. By reducing the waveguide dimensions to increase the mode field size, coupling loss could be reduced between the waveguide and the fiber. Different mode field dimensions ofnanotaper SiGe-SOI waveguides and fiber are quantitatively analyzed, and the quantitative relationship between nanotaper SiGe-SOI waveguide dimensions and mode field dimensions are obtained. Finally, nanotaper SiGe-SOI waveguides are made, and the test and analysis have been done. The final experimental results accord well with the theoretical analysis. When the waveguide width is 0.5 μm, the minimum coupling loss of the SiGe-SOI waveguide is 0.56 dB/facet, and also the correctness of the design method and theoretical analysis are verified.
Based on a submicrometer-sized SiGe-SOI waveguide, the coupling loss mechanism is analyzed between the submicrometer-sized SiGe-SOI waveguide and the fiber. The main sources of coupling loss are analyzed, and the mismatch loss of the mode field is the mainly lost during connection between the submicrometer-sized waveguide and the fiber. In order to reduce the mismatch loss of the mode field, the structure ofa nanotaper SiGeSOI waveguide with a nanometer-sized tip is adopted. By reducing the waveguide dimensions to increase the mode field size, coupling loss could be reduced between the waveguide and the fiber. Different mode field dimensions ofnanotaper SiGe-SOI waveguides and fiber are quantitatively analyzed, and the quantitative relationship between nanotaper SiGe-SOI waveguide dimensions and mode field dimensions are obtained. Finally, nanotaper SiGe-SOI waveguides are made, and the test and analysis have been done. The final experimental results accord well with the theoretical analysis. When the waveguide width is 0.5 μm, the minimum coupling loss of the SiGe-SOI waveguide is 0.56 dB/facet, and also the correctness of the design method and theoretical analysis are verified.
基金
supported by the National Natural Science Foundation of China(No.61204080)
the Natural Science Foundation of Shaanxi Province(No.2012JM1011)
the Shaanxi Provincial Education Department(No.2013JK1111)
the Doctoral Program Foundation of Xi’an Polytechnic University of China(No.BS1128)
the Shaanxi Province Ordinary University Key Disciplines Construction Projects of Special Funds(No.(2008)169)