期刊文献+

An interpolating reproducing kernel particle method for two-dimensional scatter points 被引量:2

An interpolating reproducing kernel particle method for two-dimensional scatter points
下载PDF
导出
摘要 An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in the interpolating repro- ducing kernel particle method satisfies the property of the Kronecker delta function. This method offers a mathematics basis for recognition technology and simulation analysis, which can be expressed as simultaneous differential equations in science or project problems. Mathematical examples are given to show the validity of the interpolating reproducing kernel particle method. An interpolating reproducing kernel particle method for two-dimensional (2D) scatter points is introduced. It elim- inates the dependency of gridding in numerical calculations. The interpolating shape function in the interpolating repro- ducing kernel particle method satisfies the property of the Kronecker delta function. This method offers a mathematics basis for recognition technology and simulation analysis, which can be expressed as simultaneous differential equations in science or project problems. Mathematical examples are given to show the validity of the interpolating reproducing kernel particle method.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第7期238-241,共4页 中国物理B(英文版)
基金 supported by the National Natural Science Foundation of China(Grant No.11171208) the Natural Science Foundation of Shanxi Province,China(Grant No.2013011022-6)
关键词 interpolating reproducing kernel particle method point interpolating characteristic scatter points interpolating reproducing kernel particle method, point interpolating characteristic, scatter points
  • 相关文献

参考文献26

  • 1Belytschko T, Lu Y Y and Gu L 1994 hit. J, Numer. Meth. Eng. 37 229.
  • 2Cheng R J and Cheng Y M 2008 Acta Phys. Sin. 57 6037 (in Chinese).
  • 3Ren H P and Cheng Y M 2011 Int. J.Appl. Mech. 3 735.
  • 4Aluru N R 2000 Int. J. Numbei: Meth. Eng. 47 1083.
  • 5Cheng Y M and Li J H 2006 Sci. China Ser. G: Phys. Mech. Astron. 49 46.
  • 6Chert L and Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese).
  • 7Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese).
  • 8Chen L and Cheng Y M 2010 Sci. Sin. Phys. Mech. Astron. 40 242 (in Chinese).
  • 9Chen L and Cheng Y M 2010 Sci. China Phys. Mech. Astron. 53 954.
  • 10Chen L and Cheng Y M 2010 Chin. Phys. B 19 090204.

同被引文献20

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部