期刊文献+

一种设计分解的正确性证明(英文)

The Correctness Proof of a Decomposing Approach
下载PDF
导出
摘要 二维变量化设计系统可以用含有 n个未知数、m个方程的非线性方程组表示 .通过设计分解可以提高几何约束求解的效率和数值稳定性 .给出了一种基于图论的设计分解方法及其正确性证明 .该方法可以 (1)处理结构欠约束系统的分解 ;(2 )检测出冗余约束 .分解算法在有限步内终止 。 Mathematically a 2D constrained design system can be modeled by m independent nonlinear equations with n design variables and the design process can be viewed as a process of solving a geometric constraint system. Design decomposition is a highly effective way to improve a geometric constraint solver to make it efficient and robust. This paper reports a graph based decomposing approach and gives the correctness proof of the approach: (1) this approach can deal with the decomposition of structurally under constrained systems, (2) this approach can detect structurally over constrained systems, (3) the approach can terminate within finite number of steps, and (4) the solving steps obtained through the decomposing approach are structurally consistent.
出处 《软件学报》 EI CSCD 北大核心 2001年第3期323-328,共6页 Journal of Software
基金 国家自然科学基金&&
关键词 设计分解 几何约束求解 规约 三维变量设计系统 图论 CAD design decomposition geometric constraint solving graph clipping graph reducing
  • 相关文献

参考文献4

  • 1[3]Owen,J.C.Algebraic solution for geometry from dimensional constraints.In:Proceedings of the 1st Symposium on Solid Modeling Foundations and CAD/CAM Applications.New York:ACM Press,1991.379~407.
  • 2[4]Kramer,G.A.Solving Geometric Constraint Systems:A Case Study in Linematics.Cambridge,MA:MIT Press,1992.
  • 3[5]Fudos,I.,Hoffmann,C.M.A graph-constructive approach to solving systems of geometric constraints.ACM Transactions on Graphics,1997,16(2):179~216.
  • 4[6]Owen,J.C.Algebraic solution for geometry from dimensionalconstraints.In:Jaroslaw R.ed.Proceedings of the 1st Sym- posium on Solid Modeling Foundations and CAD/CAM Applications.New York:ACM Press,1991.379~407.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部