期刊文献+

基于逼近型细分的诱导细分格式 被引量:5

Subdivision schemes induced by approximating schemes
原文传递
导出
摘要 利用逼近型细分构造插值型细分是细分领域中的一个重要问题,目前可以给出插值型细分生成函数的研究还非常少.本文给出一个生成函数的统一公式,该公式由逼近型细分的生成函数与一个子生成函数构成.该公式对应一个插值型细分或者逼近型细分,这个取决于子生成函数的选取.该公式在理论和实际中都很重要.首先,这个公式适用于任意伸缩矩阵的多元基本型细分;其次,不论是一元细分还是多元细分,推导这个统一公式都不需要求解线性方程组;再次,这个公式具有显著的几何意义,应用方便;最后,从理论上分析诱导细分的零条件和多项式再生性,本文发现这些性质不仅与逼近型细分的零条件有关,而且与逼近型细分的多项式再生性有关,从而对细分格式的构造有指导意义.本文给出3个例子来说明这个统一公式. Construction of new interpolatory subdivision schemes from approximating subdivision schemes is a hot topic that recently emerges in the field of subdivision method. However, rather less attention has been paid to the unified formula that can express the interpolatory subdivision generating function analytically in terms of the approximating subdivision symbol. This paper presents such a unified subdivision generating function formula that consists the generating function of the approximating subdivision scheme and one subsymbol. This unified subdivision generating function formula can be a generating function of an interpolatory scheme or that of an approximating scheme depending on the specific choice of the subsymbol. This formula plays an important role in theories and applications. First, it can be applied to higher-dimensional subdivisions with arbitrary dilation matrix, and it can also induce approximating schemes. Second, it does not need to solve a system of linear equations. Third, this formula has significant geometric meanings. At last, the specific structure of the formula also implies that zero condition properties of new subdivision scheme is closely related with the properties of the primal approximating subdivision. We illustrate the unified formula with three examples.
出处 《中国科学:数学》 CSCD 北大核心 2014年第7期755-768,共14页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:61033012 11171052 61272371 61003177和11301053) 教育部新世纪优秀人才支持计划(批准号:NCET-11-0048)资助项目
关键词 逼近型细分 插值型细分 零条件 生成函数 approximating subdivision, interpolatory subdivision, zero condition, generating function
  • 相关文献

参考文献27

  • 1Li G, Ma W. A method for constructing interpolatory subdivision schemes and blending subdivisions. Comput Graph Forum, 2007, 26:185-201.
  • 2Romani L. From approximating subdivision schemes for exponential splines to high-performance interpolating algo- rithms. J Comput Appl Math, 2009, 224:383-396.
  • 3Conti C, Gemignani L, Romani L. From symmetric subdivision masks of Hurwitz type to interpolatory subdivision masks. Linear Algebra Appl, 2009, 431:1971-1987.
  • 4Conti C, Gemignani L, Romani L. Solving Bezout-like polynomial equations for the design of interpolatory subdivision schemes. In: Proceedings of the 2010 International Symposium on Symbolic and Algebraic Computation. New York: Association for Computing Machinery, 2010, 251-256.
  • 5Beccari C V, Casciola G, Romani L. A unified framework for interpolating and approximating univariate subdivision. Appl Math Comput, 2010, 216:1169-1180.
  • 6Conti C, Gemignani L, Romani L. From approximating to interpolatory non-stationary subdivision schemes with the same generation properties. Adv Comput Math, 2011, 35:217-241.
  • 7Conti C, Romani L. Algebraic conditions on non-stationary subdivision symbols for exponential polynomial reproduc- tion. J Comput Appl Math, 2011, 236:543-556.
  • 8Conti C, Gemignani L, Romani L. A constructive algebraic strategy for interpolatory subdivision schemes induced by bivariate box splines. Adv Comput Math, 2013, 30:395-424.
  • 9Maillot J, Stare J. A unified subdivision scheme for polygonal modeling. Comput Graph Forum, 2001, 20:471-479.
  • 10张宏鑫,王国瑾.半静态回插细分方法[J].软件学报,2002,13(9):1830-1839. 被引量:12

二级参考文献34

  • 1张纪文,罗国明.三次样条曲线的拓广──C曲线[J].计算机辅助工程,1996,5(3):12-20. 被引量:236
  • 2Young R. An Introduction to Nonharmonic Fourier Series. New York: Academic Press, 1980.
  • 3Li S, Xian J. Biorthogonal multiple wavelets generated by vector refinement equation. Sci China Ser A-Math, 37(5): 549-558 (2007).
  • 4Averbuch A Z, Zheludev V A. A new family of spline-based biorthogonal wavelet transforms and their applications to image compression. IEEE Trans Image Process, 13:993-1007 (2004).
  • 5Cohen A, Daubechies I. A new technique to estimate the regularity of refinable funtions. Rev Mat Iberoamericana, 12:527-591 (1996).
  • 6Dahmen W. Wavelet and multiscale methods for operator equations. Acta Numer, 6:55-228 (1997).
  • 7Daubechies I. Ten Lectues on Wavelets. CMBS-NSF Series in Applied Mathematics. Philadelphia: SIAM, 1992.
  • 8Ji H, Riemenschneider S D, Shen Z W. Multivariate compactly supported fundamental refinable functions duals and biorthogonal wavelets. Stud Appl Math, 102:173-204 (1999).
  • 9Chui C K, Lian J A. A study of orthogonal multi-wavelets. Appl Numer Math, 20:273 298 (1996).
  • 10Cohen A, Daubechiesa I. A stability criterion for biorthogonal wavelet bases and their related subband coding schem. Duke Math J. 68:517-531 (1992).

共引文献14

同被引文献27

  • 1郑红婵,叶正麟,赵红星.双参数四点细分法及其性质[J].计算机辅助设计与图形学学报,2004,16(8):1140-1145. 被引量:30
  • 2黄章进.单变量均匀静态细分格式的连续性分析和构造[J].软件学报,2006,17(3):559-567. 被引量:7
  • 3王栋,张曦,李桂清.混合细分曲线及其应用[J].计算机辅助设计与图形学学报,2007,19(3):286-291. 被引量:7
  • 4申立勇,黄章进.一类多参数的曲线细分格式[J].计算机辅助设计与图形学学报,2007,19(4):468-472. 被引量:4
  • 5DAI H Y, WANG X S, Luo J, LI Y Z. A new polarimetric method by using spatial polarization characteristics of scanning antenna [J]. IEEE Transaction on Antennas and Propagation, 2012, 60(3): 1653-1656.
  • 6BURKE J V, CURTIS F E, WANG H, WANG J S. Iterative reweighted linear least squares for exact penalty subproblems on product sets [J]. SIAM Journal on Optimization, 2015, 25(1): 261-294.
  • 7DYKES L, REICHEL L. Simplified GSVD computations for the solution of linear discrete ill-posed problems [J]. Journal of Computational and Applied Mathematics, 2014, 255: 15-27.
  • 8REICHEL L, RODRIGUEZ G. Old and new parameter choice rules for discrete ill-posed problems [J]. Numberical Algorithms, 2013, 63: 65-87.
  • 9LIU C S. A dynamical tikhonov regularization for solving Ill-posed linear algebraic systems [J]. Acta Applicandae Mathematicae, 2013, 123: 285-307.
  • 10罗佳,王雪松,李永祯,肖顺平,戴幻尧.一种估计来波信号极化状态的新方法[J].国防科技大学学报,2008,30(5):56-61. 被引量:6

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部