期刊文献+

3~5μm宽带超低色散平坦硫系光子晶体光纤 被引量:2

3~5 Microns Chalcogenide Photonic Crystal Fiber with Broadband Ultra-low Flattened Dispersion
下载PDF
导出
摘要 利用硫系光子晶体光纤色散可控特性,设计了一种宽带超低色散平坦硫系光子晶体光纤,采用多极法研究了孔间距和占空比等参量对色散曲线的影响.通过优化包层中不同层数空气孔的直径,获得内两层气孔半径为0.7μm,外两层气孔半径为0.8μm和孔间距为5μm的光子晶体光纤结构.模拟结果显示,该光纤在3~5μm波段可实现宽带色散平坦,且色散绝对值低于3.8ps·nm-1·km-1. Using the dispersion controlled feature of chalcogenide photonic crystal fiber, the broadband ultralow dispersion-flattened chalcogenide photonic crystal fibers was designed, and the multipole method was used to research the effects of the hole pitch and the aperture ratio on the dispersion curves. By optimizing the diameter of the air holes of different layers in cladding, the structure with 0.7 μm air hole radius of inside two layers, 0.8μm air hole radius of outer two layers and 5μm hole pitch were obtained. The simulation results show that this structure is broadband flattened dispersion in 3 ~5μm, and the absolute value of dispersion is less than 3.8 ps· nm^-1·km^-1.
出处 《光子学报》 EI CAS CSCD 北大核心 2014年第6期14-19,共6页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.61177087 61307060) 国家科技部重大国际合作项目(No.2001DFA12040) 教育部新世纪优秀人才计划项目(No.NCET-10-0976) 浙江省杰出青年基金(No.R1101263) 浙江省自然科学基金(No.LQ12F05004) 宁波市新型光电功能材料及器件创新团队项目(No.2009B21007) 宁波市自然科学基金(No.2012A610116) 光电材料与技术国家重点实验室开放基金 宁波大学王宽诚幸福基金资助
关键词 光子晶体光纤 平坦色散 多极法 硫系玻璃 中红外 Photonic crystal fiber Flattened dispersion Multipole method Chalcogenide glass Midinfrared
  • 相关文献

参考文献25

二级参考文献139

共引文献80

同被引文献33

  • 1刘永兴,张培晴,许银生,戴世勋,王训四,徐铁峰,聂秋华.Ge_(20)Sb_(15)Se_(65)硫系玻璃光子晶体光纤的中红外色散特性[J].光子学报,2012,41(5):516-521. 被引量:12
  • 2EDGAR F J,KLAUS S. Investigation o{ temperature and gas concentration distributions in hot exhausts (airplanes and burners) by scanning imaging FTIR speetrometry[C]. SPIE, (S0277 786X), 2005, 5979(10) :365-376.
  • 3SHAW L, SANGHERA J, AGGARWAL I, et al. As-S and As-Se based photonic band gap fiber for IR laser transmission [J]. Optics Express, 2003, 11(25): 3455-3460.
  • 4SANGHERA J S, SHAW L B, PUREZA P, et al. Nonlinear properties of chalocogenide glass fibers[J]. Journal of Optoelectronics and Advanced Materials, 2007, 1(08): 2148- 2155.
  • 5DESEVEDAVY F, RENVERSEZ G, TROLES J, et al. Chalcogenide glass hollow core photonic crystal fibers[J]. Optical Materials, 2010, 32(06) : 1532-1539.
  • 6BRECHET F, MARCOU J, PAGNOUX D, et al. Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method[J]. Optical Fiber Technology, 2000, 6(2) : 181-191.
  • 7HAXHA S, ADEMGIL H. Novel design of photonic crystal fibres with low confinement losses, nearly zero ultra-flatted chromatic dispersion, negative chromatic dispersion and improved effective mode area[J]. Optics Communications, 2008, 281(2) : 278-286.
  • 8CARLIE N, ANHEIER NC JR, QIAO HA, et al. Measurement of the refractive index dispersion of As2 Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range[J]. Review of Scientific Instruments, 2011, 82(5): 53103-1: 53103-7.
  • 9WEIBLEN R, DOCHERTY A, HU J, et al. Calculation of the expected bandwidth for a mid-infrared super continuum source based on AszS3 chalcogenide photonic crystal fibers [J]. Optics Express, 2010, 18(25): 26666-26674.
  • 10孟佳,侯蓝田,周桂耀,高飞,苑金辉,魏东宾.Analysis of the special hollow-core photonic crystal fibre by finite element method[J].Chinese Physics B,2008,17(10):3779-3784. 被引量:2

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部