期刊文献+

金属纳米颗粒在Lu_2O_3薄膜中的应变场分析

Strain Distribution of Metal Nanoparticles Embedded in Lu_2O_3 Film
下载PDF
导出
摘要 利用有限元分析法对镶嵌在Lu2O3薄膜中的Au、Cu、Pt、Co金属纳米颗粒的应变场分布进行分析.分析表明:金属纳米颗粒在生长过程中受Lu2O3薄膜的压缩应力作用,从而在纳米颗粒内部和表面产生相应应变,应变分布与金属纳米颗粒的杨氏模量和泊松比有关.杨氏模量大的金属纳米颗粒表面应变和内部应变差异较大;而杨氏模量小的金属纳米颗粒内外应变差相对较小.随着金属纳米颗粒在基体材料内部不断生长,其受到的偏应变也逐渐增大.金属纳米颗粒生长过程中的这种偏应变的存在和变化将极大地影响其内部晶格结构和表面形貌,进而影响金属纳米颗粒的性能. The strain distributions of Au, Cu, Pt and Co nanoparticles embedded in Lu2O3 matrix were investigated by the finite-element calculations. The simulation results indicated that all of metal nanoparticles incure compressive stress by the Lu2O3 matrix, which thus result in the corresponding strain in the center and at the surface of nanoparticles. The strain distributions are closely related to the Young's modulus and poisson's ratio of metal nanoparticles and matrix. For the metal nanoparticle with bigger Youngrs modulus, the difference between the strain in the center and that at the surface of the nanoparticles is largerer. While, for the metal nanoparticle with smaller Younffs modulus, the difference between the strainat the surface and that in the center of the nanoparticles is smaller. Meanwhile, with the growth of metal nanoparticles, the deviator strain also increase. This net deviatoric strain distribution may also have a significant influence on the morphology and microstructure of metalnanoparticles, and thus the physical properties of metal nanoparticles.
出处 《光子学报》 EI CAS CSCD 北大核心 2014年第6期63-67,共5页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.11164008 11004087) 江西省教育厅科技项目(No.GJJ13210) 江西省光电子与通信重点实验室开放基金(No.201101) 江西师范大学博士启动基金(No.4029)资助
关键词 纳米颗粒 薄膜 有限元方法 压缩应力 应变 Nanoparticles Thin films Finite-element method Compressive stress Strain
  • 相关文献

参考文献26

  • 1IBACH H. The role of surface stress in reconstruction, epitaxialgrowth and stabilization of mesoscopic structures[J]. Surface Science Reports, 1997, 29(5) : 195-263.
  • 2ROBERTS M M, KLEIN L J, SAVAGE D E, et al. Elastically relaxed free-standing strained-silicon nanomembranes[J]. Nature Materials, 2006, 5(5) : 388-393.
  • 3JOHNSON C L, SNOECK E, EZCURDIA M, et al. Effects of elastic anisotropy on strain distributions in decahedral gold nanoparticles[J]. Nature Materials, 2007, 7(2) : 120-124.
  • 4SHAN Z, ADESSO G, CABOT A, etal. Ultrahigh stress and strain in hierarchically structured hollow nanoparticles[J]. Nature Materials, 2008, 7(18) : 947-952.
  • 5SMITH A M, MOHS A M, NIE S. Tuning the optical and electronic properties of colloidal nanoparticles by lattice strain [J]. Nature Nanotechnology, 2008, 4(1) : 56 -63.
  • 6TSENG J Y, CHEN Y T, HSU C H, et al. Effect of annealing time on structure, composition and electrical characteristics of self- assembled Ptnanoparticles in metal- oxide-semiconductor memory structures [J]. Ecs Journal of Solid State Science and Technology, 2012, 1(3): 47-51.
  • 7BRUS L. Noble metal nanoparticles: Plasmon electron transfer photochemistry and single-molecule Raman spectroscopy[J]. Accounts of Chemical Research, 2008, 41 (12) : 1742-1749.
  • 8TSENG J Y, CHENG C W, WANG S Y, et al. Memory characteristics of Ptnanoparticles self-assembled from reduction of an embedded PtOx ultrathin film in metal-oxide- semiconductor structures[J]. Applied Physics Letters, 2004, 85(13) ,. 2595-2597.
  • 9YANG X C, HOU J W, LIU Y, et al. OPAA template- directed synthesis and optical properties of metal nanoparticles [J]. Nanoscale Research Letters, 2013, 8(1) : 1-8.
  • 10孙晨, 李传皓, 石瑞英, 等. 金属纳米颗粒对有机太阳能电池光吸收效率影响的研究[J]. 光子学报, 2012, 41(11): 1335-1341.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部