期刊文献+

基于中值的平方距离对称共生矩阵阈值化方法

Median-based Square Distance Symmetrical Co-occurrence Matrix Thresholding Method
下载PDF
导出
摘要 对灰度概率分布呈现偏斜和重尾的一类图像的阈值选取问题进行了研究.鉴于应用均值方法进行分类估计出现偏差的问题,本文应用中值方法进行修改,使图像阈值的选取更加合理.基于平方距离的对称共生矩阵阈值方法,在对称共生矩阵上定义了区域中值,提出了基于中值进行分类统计的平方距离对称共生矩阵阈值法,并给出了多阈值分割计算式.与Otsu′s法、基于平方距离法的分割比较表明:本文提出的方法不仅对于分类概率呈现偏斜和重尾的情况分割效果突出,而且由于考虑了图像的空间信息,与基于中值的Otsu′s法相比,所提取的目标信息更加完整,边缘更加清晰;对于小目标类的图像,该方法也具有良好的阈值选取效果.为进一步说明该方法的正确性和有效性,基于标准分割图像进行了误分类误差计算,结果表明所提出的方法误差值能够达到最小. The image threshold selection of skew and heavy-tailed class-conditional distributions were studied. Due to the deviation of the mean-based method in classification estimation, the median-based method is more reasonable in threshold selection. Based on the square distance symmetrical co-occurrence matrix, the region median was defined, and then using median classified statistics method, a new threshold approach was proposed based on the square distance symmetrical co-occurrence matrix, and the multi-threshold segmentation algorithms was advanced. Compared with OtsuPs and square distance, the proposed method not only has prominent segmentation performance for the images of skew and heavy- tailed class-conditional distributions, hut it takes the more spatial statistical information on account, compared with median-based Otsu's thresholding, the extracted object information is more complete, and the edge is clearer. For the small object probability distribution images, this method also has better threshold segmentation effect. To illustrate the correctness and effectiveness, based on the ground-truth images, the misclassification error results show that the proposed method can obtain the minimum value.
作者 张弘 范九伦
出处 《光子学报》 EI CAS CSCD 北大核心 2014年第6期120-128,共9页 Acta Photonica Sinica
基金 国家自然科学基金(Nos.61102095 No.61305098) 陕西省自然科学基础研究计划项目(No.2012JQ8045) 陕西省教育厅专项科研计划(No.12JK0498)资助
关键词 图像处理 图像分割 阈值选取 中值 对称共生矩阵 Otsu’s方法 平方距离 误分类误差 Image processing Image segmentation Threshold selection Median filters Symmetrical cooccurrence matrix Otsu's method Square distance Misclassification error
  • 相关文献

参考文献22

  • 1SEZGIN M, SANKUR B. Survey over image thresholding techniques and quantitative performance evaluation [ J ]. Journal of Electronic Imaging, 2004, 13 (1) : 146-168.
  • 2XU Xiang-yang, XU Sheng-zhou, JIN Liang-hai, et al. Characteristic analysis of Otsu threshold and its applications [J]. Pattern Recognition Letters, 2011, 32(7) : 956-961.
  • 3FAN Jiu-lun, LEI Bo. A modified valley-emphasis method for automatic thresholding [ J ]. Pattern Recognition Letters, 2012, 33(6) : 703-708.
  • 4XIE Xie, FAN Jiu-lun, ZHU Yin. The optimal All-Partial- Sums algorithm in commutative semigroups and its applications for image thresholding segmentation [ J ]. Theoretical Computer Science, 2012, 412(15) : 1419-1433.
  • 5颜学颖,焦李成.基于各向异性自适应高斯加权方向窗的非局部三维Otsu图像门限分割[J].电子与信息学报,2012,34(11):2672-2679. 被引量:10
  • 6雷博,范九伦.二维广义模糊熵图像阈值分割法[J].光子学报,2010,39(10):1907-1914. 被引量:10
  • 7LIN Qian-qian, OU Cong-jie. Tsallis entropy and the long- range correlation in image threholding[J]. Signal Processing, 2012, 92(12): 2931-2939.
  • 8张弘,范九伦.二维Arimoto熵直线型阈值分割法[J].光子学报,2013,42(2):234-240. 被引量:16
  • 9范九伦,雷博.灰度图像最小误差阈值分割法的二维推广[J].自动化学报,2009,35(4):386-393. 被引量:48
  • 10HORNG M H. Multilevel minimum cross entropy threshold selection based on the honey bee mating optimization [J]. Expert Systems with Applications, 2010, 37 (6) : 4580- 4592.

二级参考文献64

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部