期刊文献+

焦磷酸测序技术在检测甲型H1N1血凝素基因裂解位点突变中的应用

Application of pyrosequencing technology in hemagglutinin cleavage site variant of H1N1 virus
原文传递
导出
摘要 目的基于焦磷酸测序技术建立甲型H1N1流感病毒血凝素(HA)基因裂解位点突变的快速检测方法,探讨其临床应用价值。方法采用RT-PCR扩增甲型H1N1病毒血凝素基因中的HA片段,在生物信息学分析的基础上,针对甲型H1N1病毒血凝素基因含有裂解位点序列片段,分别设计一套生物素标记的PCR引物和测序引物,运用焦磷酸测序技术对含甲型H1N1病毒裂解位点基因片段进行序列测定,同时分析青岛地区甲型H1N1流感病毒流行株的裂解位点基因特征。结果建立了基于焦磷酸测序技术检测甲型H1N1流感病毒裂解位点突变方法,实现甲型H1N1流感病毒HA基因裂解位点的高通量检测,青岛地区甲型H1N1流感病毒裂解位点344氨基酸序列没有发生变异。结论本研究所建立的方法具有自动化程度高和结果准确等特点,适用于甲型H1N1流感病毒裂解位点进行快速高通量检测。 Objective To explore a rapid assay for detection of cleavage site variant of the pandemic influenza A (H1N1) virus based on pyrosequencing techniques. Methods The HA gene of these strains was amplified by RT-PCR. According to the published sequences in GenBank, pyresequencing primers and one pair of PCR primers were designed for pyrosequencing analysis. The genetic characteristic of cleavage site of pandemic influenza A (H1N1) virus in Qingdao City were pyrosequenced and analyzed. Results Anovel pyrosequencing assay was developed for the rapid and high-throughput detection of cleavage site of the pandemic influenza A (H1N1) virus. The key amino acid position 344 of cleavage site of virulent strains in Qingdao City isn't mutated compared with that of strains in 2009. Conclusion This pyrosequencing assay is a rapid and high-throughput method for cleavage site variant of the virus and could be used for the pandemic influenza A(H1N1) virus surveillance.
出处 《中国国境卫生检疫杂志》 CAS 2014年第3期186-189,193,共5页 Chinese Journal of Frontier Health and Quarantine
关键词 焦磷酸测序技术 甲型H1N1流感病毒 血凝素(HA)基因 突变 裂解位点 Pyrosequencing Pandemic influenza A(H1N1) virus Hemagglutinins Variants Cleavage site
  • 相关文献

参考文献15

二级参考文献99

  • 1Webster R G, Bean W J, Gorman O T, et al. Evolution and ecology of influenza A viruses. Microbiol Rev, 1992, 56:152 -179.
  • 2Peiris J S, de J, Guan Y. Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev, 2007, 20:243- 267.
  • 3Kumar S, Tamura K, Jakobsen I B, et al. MEGA2: Molecular evolutionary genetics analysis software. Bioinformatics, 2001, 17:1244- 1245.
  • 4Thompson J D, Higgins D G, Gibson T J. Clustal W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res, 1994, 22:4673--4680.
  • 5Schwede T, Kopp J, Guex N, et al. SWISS MODEL: An automated protein homology-modeling server. Nucleic Acids Res, 2003, 31: 3381--3385.
  • 6William H, Andrew D, Klaus S. VMD: Visual molecular dynamics. J Mol Grap, 1996, 14:33--38.
  • 7Gabriel G, Herwig A, Klenk H D. Interaction of polymerase subunit PB2 and NP with importin alpha1 is a determinant of host range of influenza A virus. PLoS Pathog, 2008, 4: e11.
  • 8Qi x, Li X, Rider P, et al. Molecular characterization of highly pathogenic H5N1 avian influenza A viruses isolated from raccoon dogs in China. PLoS ONE, 2009, 4: e4682, doi:10.1371/journal.pone.0004682.
  • 9Obenauer J C, Denson J, Mehta P K, et al. Large-scale sequence analysis of avian influenza isolates. Science, 2006, 311: 1576--1580.
  • 10Jackson D, Hossain M J, Hickman D, et al. A new influenza virus virulence determinant: The NS1 protein four C-terminal residues modulate pathogenicity. Proc Natl Acad Sci USA, 2008, 105:4381--4386.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部