期刊文献+

Synthesis of CuInSe_2 nanoparticles by phase transformation of In_2Se_3 via wet chemical process in low temperature

Synthesis of CuInSe_2 nanoparticles by phase transformation of In_2Se_3 via wet chemical process in low temperature
原文传递
导出
摘要 Chalcopyrite-type CuInSe2 nanoparticles are successfully prepared by using In2Se3 nanoparticles as a precursor reacted with copper chloride(CuCl) solution via a phase transformation process in low temperature. The reaction time is a key parameter. After the reaction time increasing from 0.5 h to 8 h, In2Se3 and CuCl react with each other gradually via phase transformation into CuInSe2 without any intermediate phase. The crystalline structure and morphology of the CuInSe2 nanoparticles are characterized by X-ray diffraction(XRD) and field emission scanning electron microscopy(FESEM). The diameter of CuInSe2 nanoparticles with good dispersibility ranges from 10 nm to 20 nm. The band gap of the CuInSe2 nanoparticles is 1.04 eV calculated from the ultraviolet-visible(UV-VIS) spectrum. Chalcopyrite-type CulnSe2 nanoparticles are successfully prepared by using In2Se3 nanoparticles as a precursor reacted with copper chloride (CuCl) solution via a phase transformation process in low temperature. The reaction time is a key parameter. After the reaction time increasing from 0.5 h to 8 h, In2Se3 and CuCl react with each other gradually via phase transformation into CuInSe2 without any intermediate phase. The crystalline structure and morphology of the CuInSe2 nanoparticles are characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The diameter of CuInSe2 nanoparticles with good dispersibility ranges from 10 nm to 20 nm. The band gap of the CulnSe2 nanoparticles is 1.04 eV calculated from the ultraviolet-visible (UV-VIS) spectrum.
出处 《Optoelectronics Letters》 EI 2014年第4期244-246,共3页 光电子快报(英文版)
  • 相关文献

参考文献17

  • 1J. F. Guillemoles, U. Rau, L. Kronik, H. W. Schock and D. Cahen, Advanced Materials 11,957 (1999).
  • 2K. Ramanathan, M. A. Comreras, C. L. Perkins, S. Asher, E S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, Progress in Photovoltaics: Research and Applications 11,225 (2003).
  • 3ZHOU Fang-fang, CHEN Qin-miao, ZHU Zi-cheng, NI Yi, LI Zhen-qing, DOU Xiao-ming and ZHUANG Song-lin, Journal of Optoelectronics-Laser 23, 1925 (2012). (in Chinese).
  • 4H. I. Hsiang, L. H. Lu, Y. L. Chang, D. Ray and F. S. Yen, Journal of Alloys and Compounds 509, 6950 (2011).
  • 5T. Wada, H. Kinoshita and S. Kawata, Thin Solid Films 431-432, 11 (2003).
  • 6T. Wada and H. Kinoshita, Journal of Physics and Chemistry of Solids 66, 1987 (2005).
  • 7L. Zhang, J. Liang, S. J. Peng, Y. H. Shi and J. Chen, Materials Chemistry and Physics 106, 296 (2007).
  • 8W. L. Lu, Y. S. Fu and B. H. Tseng, Journal of Physics and Chemistry of Solids 69, 637 (2008).
  • 9H. M. Hu, C.H. Deng, M. Sun, K. H. Zhang and M. D. Yang, Materials Letters 65, 617 (2011).
  • 10F. Bensebaa, C. Durand, A. Aouadou, L. Scoles, X. M. Du, D. Wang and Yvon Le Page, Journal of Nanoparti- cle Research 12, 1897 (2009).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部