期刊文献+

BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed 被引量:11

BnWRI1 coordinates fatty acid biosynthesis and photosynthesis pathways during oil accumulation in rapeseed
原文传递
导出
摘要 Photosynthesis in“green”seeds, such as rapeseed, soybean, and Arabidopsis, plays a substantial role in the improved efficiency of oil accumulation. However, the molecular mecha-nism underpinning the coordinated expression of fatty acid (FA) biosynthesis-and photosynthesis-related genes in such develop-ing seeds remains to be elucidated. Here, we found that seed-specific overexpression of BnWRI1, a WRI1 homolog from rapeseed (Brassica napus cv. ZGY2), results in enhanced chlorophyl content in developing seeds and increased oil content and seed mass in matured seeds. BnWRI1 was co-expressed with BnBCCP and BnCAB, two marker genes of FA biosynthesis and photosynthesis during seed development, respectively. Over-expression of BnWRI1 increased expression of both marker genes. Further, the nuclear-localized BnWRI1 protein was found to act as a transcription activator. It could bind to the GT1-element and/or GCC-box, which are widespread in the upstream regions of genes involved in FA biosynthesis and photosynthesis pathways. Accordingly, BnWRI1 could interact with promoters of BCCP2 and LHB1B2 in vivo. These results suggested that BnWRI1 may coordinate FA biosynthesis and photosynthesis pathways in developing seeds via directly stimulating expression of GT1-element and/or GCC-box containing genes. Photosynthesis in“green”seeds, such as rapeseed, soybean, and Arabidopsis, plays a substantial role in the improved efficiency of oil accumulation. However, the molecular mecha-nism underpinning the coordinated expression of fatty acid (FA) biosynthesis-and photosynthesis-related genes in such develop-ing seeds remains to be elucidated. Here, we found that seed-specific overexpression of BnWRI1, a WRI1 homolog from rapeseed (Brassica napus cv. ZGY2), results in enhanced chlorophyl content in developing seeds and increased oil content and seed mass in matured seeds. BnWRI1 was co-expressed with BnBCCP and BnCAB, two marker genes of FA biosynthesis and photosynthesis during seed development, respectively. Over-expression of BnWRI1 increased expression of both marker genes. Further, the nuclear-localized BnWRI1 protein was found to act as a transcription activator. It could bind to the GT1-element and/or GCC-box, which are widespread in the upstream regions of genes involved in FA biosynthesis and photosynthesis pathways. Accordingly, BnWRI1 could interact with promoters of BCCP2 and LHB1B2 in vivo. These results suggested that BnWRI1 may coordinate FA biosynthesis and photosynthesis pathways in developing seeds via directly stimulating expression of GT1-element and/or GCC-box containing genes.
出处 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2014年第6期582-593,共12页 植物学报(英文版)
基金 supported by grants from the National High Technology Research and Development Program of China (2008AA02Z103) the Program of NSFC (30671332) the Key Program of Zhejiang Provincial Natural Science Foundation (Z304430) the Zhejiang Province Community Technology Research Projects (2012C22037)
关键词 BnWRI1 Brassica napus oil accumulation photosynthesis transcription factor BnWRI1 Brassica napus oil accumulation photosynthesis transcription factor
  • 相关文献

参考文献4

二级参考文献13

共引文献29

同被引文献70

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部