期刊文献+

用于车辆分类的多传感器车型特征融合算法 被引量:6

Multi-Sensor Signature Fusion Algorithm for Vehicle Type Classification
下载PDF
导出
摘要 为避免单一地磁传感器进行车型识别时存在的误差,结合自主研发的地磁传感器网络,提出一种基于多传感器的车型特征融合算法.该算法通过计算传感器网络内不同车型特征信号的相关关系来确定车辆运行状态,并利用最大似然法则结合皮尔逊相关系数进行数据融合,以获取更加准确的车辆特征信号,为现有车型分类方法提供更加准确的输入参数.实际道路试验表明,与现有单节点分类算法相比,文中算法对中大型车辆的分类准确率可以提高17.5%. In order to avoid the error of vehicle type classification with single-geomagnetic sensor,a geomagnetic sensor network is constructed and is used to create a multi-sensor signature fusion algorithm for vehicle type classification. In this algorithm,the statuses of moving vehicles are determined on the basis of correlations of different vehicle signatures,and vehicle data are fused via the maximum likelihood in combination with the Pearson correlation coefficient ,so that more accurate vehicle signatures are acquired and more precise inputs for vehicle type classification are provided. Practical road experiments show that,in comparison with the existing single-sensor classification algorithms,this newly proposed algorithm helps the classification accuracy for medium-or large-size vehicles improve by 17 . 5%.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期52-58,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家"863"计划项目(2012AA112401) 国家自然科学基金资助项目(61104164)
关键词 交通运输系统工程 车型分类 交通传感器网络 相关性分析 最大似然估计 transportation system engineering vehicle type classification traffic sensor network correlation analysis maximum likelihood estimation
  • 相关文献

参考文献14

  • 1Mei [am Tam,William H K Lain. Application of automatic vehicle identification technology for real-time journey time estimation [ J]. Information Fusion,2011,12( 1 ) :11-19.
  • 2Banihan Gunay. Using automatic number plate recognition technology to observe drivers' headway preferences [ J ]. Journal of Advanced Transportation ,2012,46(4) :305-317.
  • 3Ahmed M M, Abdel-Aty M A. The viability of using auto- matic vehicle identification data for real-time crash pre- diction [ J ]. IEEE Transactions on Intelligent Transporta- tion Systems, 2012,13 ( 2 ) :459-468.
  • 4Furth Peter Gregory. Using archived AVL-APC data to im- prove transit performance and management [ M ]. Washing- ton D C :Transportation Research Board ,2006 : 1-7.
  • 5Lotufo R A, Morgan A D, Johnson A S. Automatic num- ber-plate recognition [ C ] //Proceedings of IEE Collo-quium on Image Analysis for Transport Applications. Lon- don :IET, 1990.
  • 6Kafai Mehran,Bir Bhanu. Dynamic Bayesian networks for vehicle classification in video [ J ]. IEEE Transactions on Industrial Informatics ,2012,8 ( 1 ) : 100-109.
  • 7Cheung S Y, Coleri S, Dundar B, et al. Traffic measure- ment and vehicle classification with single magnetic sen- sor [ J ]. Transportation Research Record:Journal of the Transportation Research Board ,2005,1917 ( 1 ) : 173-181.
  • 8Cheung Sing-Yiu, Pravin Varaiya. Traffic surveillance by wireless sensor networks : final report [ R ]. Berkley : Cali- fornia PATH Program, Institute of Transportation Studies, University of California at Berkeley,2007:27-42.
  • 9Zhang W, Tan G, Ding N, et al. Vehicle classification al- gorithm based on binary proximity magnetic sensors and neural network [ C ]//Proceedings of 1 lth International IEEE Conference on Intelligent Transportation Systems. Beijing : IEEE ,2008 : 145-150.
  • 10Kaewkamnerd S, Pongthornseri R, Chinrungrueng J, et al. Automatic vehicle classification using wireless mag- netic sensor [ C ] //Proceedings of IEEE International Workshop on Intelligent Data Acquisition and Advanced Computing Systems : Technology and Applications. Rende : IEEE ,2009:420-424.

二级参考文献10

共引文献11

同被引文献73

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部