期刊文献+

钠离子电池正极材料Na2MnPO4F的^23Na MAS NMR谱研究 被引量:2

^(23)Na MAS NMR Spectroscopic Study of Na_2MnPO_4F as Cathode Material for Sodium-Ion Battery
下载PDF
导出
摘要 Na2MnPO4F材料是一种很有发展前景的钠离子电池正极材料,本文通过非原位XRD和固体核磁共振技术研究该材料充放电结构变化(晶体结构与局域Na位).非原位XRD测试发现,充电过程在2θ为31°和36°左右出现新的衍射峰,表明钠脱出后电极上有中间相物质生成.23Na MAS NMR谱图的-209 ppm、-258 ppm和-295 ppm三个谱峰分别对应于该材料结构中Na1+Na2位、Na3位和Na4位.非原位23Na MAS NMR谱研究发现,充电过程中-209ppm处信号峰面积比例减小,表明Na1和Na2位的Na比Na3和Na4位先脱出.充电至4.2 V,-132 ppm和-330 ppm处出现中间相物质的信号峰;而放电过程则相反. The Na2MnPO4F is one of the promising cathode materials for the sodium ion batteries.In the paper,we employed the ex situ X-ray diffraction and solid state NMR techniques to study the charge and discharge processes of this material,including the crystal structure and sodium sites changes.The ex situ X-ray diffraction patterns showed that two new diffraction peaks could be observed at 31° and 36° indicating an intermediate phase formed with the extraction of Na+.From the 23Na MAS NMR spectrum of the material,three peaks were seen at -209 ppm,-258 ppm and -295 ppm,which can be assigned to Na1+Na2,Na3 and Na4 sites in the crystal structure,respectively.The ex situ solid state NMR study demonstrated that the Na+in Na1 and Na2 sites deintercalated firstly compared to Na3 and Na4 sites.The signal peaks of intermediate phase appeared at -132 ppm and -330 ppm when charging to 4.2 V.The opposite phenomenon occurred during the discharge process.
出处 《电化学》 CAS CSCD 北大核心 2014年第3期201-205,共5页 Journal of Electrochemistry
基金 973国家重点基础研究发展计划(No.2011CB935903) 国家自然科学基金(No.21233004、No.21021002)项目资助
关键词 钠离子电池 正极材料 Na2MnPO4F ^23Na MAS NMR sodium ion batteries cathode material Na2MnPO4F 23Na MAS NMR
  • 相关文献

参考文献15

  • 1Armand M, Tarascon J M. Building better batteries[J]. Na- ture, 2008, 451(7179): 652-657.
  • 2Palomares V, Casas-Cabanas M, Castillo-Martinez E, et al. Update on Na-based battery materials. A growing research path[J]. Energy & Environmental Science, 2013, 6(8): 2312-2337.
  • 3Pan H, Hu Y S, Chen L. Room-temperature stationary sodi- um-ion batteries for large-scale electric energy storage [J]. Energy & Environmental Science, 2013, 6(8): 2338-2360.
  • 4Barpanda P, Chotard J N, Recham N, et al. Structural, trans- port, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes [J]. Inor- ganic Chemistry, 2010, 49(16): 7401-7413.
  • 5郝小罡,刘子庚,龚正良,文闻,谈时,杨勇.锂离子电池正极材料Na_3V_2(PO_4)_2F_3的原位XRD及固体核磁共振研究[J].中国科学:化学,2012,42(1):38-46. 被引量:6
  • 6Ellis B L, Makahnouk W R M, Makimura Y, et al. A multi- functional 3.5 V iron-based phosphate cathode for recharge- able batteries[J]. Nature Materials, 2007, 6(10): 749-753.
  • 7Wu X, Zheng J, Gong Z, et al. Sol-gel synthesis and electro- chemical properties offluorophosphates Na2Fel_xMnPO4F/C(x = O, 0.1, 0.3, 0.7, 1) composite as cathode materials for lithium ion battery [J]. Journal of Materials Chemistry, 2011, 21(46): 18630-18637.
  • 8Kim S W, Seo D H, Kim H, et al. A comparative study on Na2MnPOaF and Li2MnPO4F for rechargeable battery cathodes[J]. Physical Chemistry Chemical Physics, 2012, 14 (10): 3299-3303.
  • 9钟艳君,李君涛,吴振国,钟本和,郭孝东,黄令,孙世刚.不同碳源合成Na2MnPO4F/C及其作为锂离子电池正极材料的性能[J].物理化学学报,2013,29(9):1989-1997. 被引量:3
  • 10Gong Z L, Yang Y. Recent advances in the research of polyanion-type cathode materials for Li-ion batteries [J]. Energy & Environmental Science, 2011, 4(9): 3223-3242.

二级参考文献123

  • 1Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc, 1997, 144: 1188-1194.
  • 2Armand M, Tarascon JM. Building better batteries. Nature, 2008, 451: 652-657.
  • 3Nyten A, Abouimrane A, Armand M, Gustafsson T, Thomas JO. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochem Commun, 2005, 7: 156-160.
  • 4Gaberscek M, Dominko R, Bele M, Meden A, Remskar M, Jamnik J. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochem Commun, 2006, 8: 217-222.
  • 5Gong ZL, Li YX, Yang Y. Synthesis and characterization of Li2MnxFe1-xSiO4 as a cathode material for lithium-ion batteries. Electrochem Solid-State Lett, 2006, 9: A542-A544.
  • 6Li YX, Gong ZL, Yang Y. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J Power Sources, 2007, 174: 528-532.
  • 7Barker J, Saidi MY, Swoyer JL. Electrochemical insertion properties of the novel lithium vanadium fluorophosphate, LiVPO4F. J Electrochem Soc, 2003, 150: A1394-A1398.
  • 8Gover RKB, Bryan A, Burns P, Barker J. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics, 2006, 177: 1495-1500.
  • 9Jiang T, Chen G, Li A, Wang CZ, Wei YJ. Sol-gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J Alloy Compd, 2009. 604-607.
  • 10Ellis BL, Makahnouk WRM, Makimura Y, Toghill K, Nazar LF. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat Mater, 2007, 6: 749-753.

共引文献9

同被引文献16

  • 1Man Huon Han,Elena Gonzalo, Gurpreet Singha,et al. A compre-hensive review of sodium layered oxides .. Powerful cathodes for Na-ion batteries [ J ] . Energy & Environmental Science, 2015 ,8(1 ):81 -102.
  • 2Yabuuchi N, Kubota K, Dahbi M, et al. Research development onsodium-ion batteries [ J ]. Chemical Reviews, 2014,114 ( 23 ):11636 -11682.
  • 3Han M H,Gonzalo E,Singh G,et al. A comprehensive review of so-dium layered oxides :powerful cathodes for Na-ion batteries[ J] . En-ergy & Environmental Science,2015,8(1) :81 - 102.
  • 4Liu L,Li X,Bo S H,ei al. High-performance P2-type Na2/3 (Mn1/2Fe1/4 Co1/4 ) 02 cathode material with superior rate capability forNa-ion batteries [ J ]. Advanced Energy Materials, 2015, 5(22)-.1500944.
  • 5Kang Wenpei,Zhang Zhenyu,Lee Pui-Kit,ef al. Copper substitutedP2-type Na0 ^CiijMn, _x02 : A stable high-power sodium-ion bat-tery cathode [ J ]. Journal of Materials Chemistry A : Materials forEnergy and Sustainability, 2015 ,3 ( 45 ) ;22846 -22852.
  • 6Vassilaras P,Ma X,Li X,et al. Electrochemical properties of mono-clinic NaNi02 [ J ] . Journal of The Electrochemical Society, 2013 ,160(2) :A207-A211.
  • 7Sathiya M,Hemalatha K,Ramesha K,et al. Synthesis,structure,andelectrochemical properties of the layered sodium insertion cathodematerial;NaNi1/3MnI/3CoI/302 [ J]. Chemistry of Materials,2012,24:1846 -1853.
  • 8Yue J L,Yin W W,Cao M al. A quinary layer transition metaloxide of NaNi1/4 Co1/4 Fe,/4 Mn1/S Ti}/S 02 as a high-rate-capabilityand long-cycle-life cathode material for rechargeable sodium ionbatteries [ J ]. Chemical Communications,2015 ,51 (86) : 15712 -15715.
  • 9Yue J L,Zhou Y N, Yu X, et al. 03-type layered transition metaloxide Na( NiCoFeTi) 1/402 as a high rate and long cycle life cath-ode material for sodium ion batteries [ J ]. Journal of MaterialsChemistry A:Materials for Energy and Sustainability,2015,3(46):23261 -23267.
  • 10Sun X,Jin Y,Zhang C Y,et al. Na[ Ni0 4 Fe0 2 Mn0 4 _Tixi02 : Acathode of high capacity and superior cyclability for Na-ion batter-ies[ J]. Journal of Materials Chemistry A: Materials for Energy andSustainability,2014,2(41) :17268 -17271.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部