期刊文献+

3连通图的可去边的分布 被引量:3

DISTRIBUTION OF REMOVABLE EDGES IN 3-CONNECTED GRAPHS
下载PDF
导出
摘要 e是 3连通图 G的一条边 ,如果 G-e是某个 3连通图的剖分 ,则称 e是 G的可去边 .研究了 3连通图的可去边的分布规律 ,得到 :1设 C是阶至少为 6的 3连通图 G中的一个圈 ,如果 C上不存在 3个连续的 3度点 ,那么 C上至少有两条可去边 .2设 T是阶至少为 5的 3连通图 G的一棵生成树 ,如果 G中至多存在一个极大半轮 ,那么 T上至少有一条可去边 .由此可得 :阶至少为 5的 3连通 3正则图的生成树上至少有一条可去边 . An edge e of a 3-connected graph G is said to be removable if G-e is the subdivition of a 3-connected graph.The distribution of removable edges in 3-connected graphs is discussed in the paper.The following results are obtained:(1) Let C be a cycle in 3-connected graph G with υ(G)≥6.If this cycle contains no three consecutive vertices with degree three,then there are at least two removable edges in it.(2) Let T be a spanning tree of G with υ(G)≥5.If G contains at most one maximal semiwheel,then T has at least one removable edge,and thus there is at least one removable edge in the spanning tree of 3-connected cubic graphs with order at least five.
出处 《广西师范大学学报(自然科学版)》 CAS 2001年第1期25-29,共5页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金资助课题! (1 9561 0 0 1 )
关键词 3连通图 可去边 生成树 分布规律 简单无向有限图 极大半轮 3-connected graph removable edge cycle spanning tree
  • 相关文献

参考文献1

二级参考文献2

共引文献5

同被引文献19

  • 1欧见平,苏健基.3连通图的可去边数[J].应用数学,2001,14(2):80-84. 被引量:1
  • 2欧丽风.K_n,K_(n,n)的边共色数及两类强正则图的共色数[J].甘肃科学学报,2004,16(3):25-26. 被引量:7
  • 3刘永平,谢继国.11阶树的优美标号[J].甘肃科学学报,2005,17(4):6-8. 被引量:3
  • 4Mader W. Ecken yon Innen- und AuBengrad n in minimal n-fach kantenzusam-menhangenden digraphen[J]. Arch Math, 1974, (25) : 107-112.
  • 5Frank A. Submodular functions in graph theory[J]. Discrete Math,1993,111:231-243.
  • 6Mader W. On vertices of degree n in minimally n-connected graphs and digraphs [A]. Combinatorics Paul Erdos is Eighty(vol. 2) [C]. Budapest : Janos Bolyai, 1996. 423-449.
  • 7Yuan Xu-dong,Cai Mao-cheng. Vertices of degree k in a minimally k-edge-connected digraph [J]. Discrete Math,2000,218:293-298.
  • 8Edmonds J,Giles R.A min-max relation for submodular function on graphs[J]. Ann Discrete Math,1977,(1):185-204.
  • 9Cai Mao-cheng. The number of vertices of degree k in a minimally k-edge-connected graph[J]. J Combin Theory Ser B, 1993, (58): 225-239.
  • 10Bondy J A,Murty U S R. Graph theory with application[M]. New York :Macmillan,1976.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部