摘要
应用有向超图理论引入超边的分解与收缩概念,把解决二个无源网络级联问题的陈氏基本互补划分(ECP)法改进为更有效的分解-收缩对(DCP)法,发展为有向(正根)分解-收缩对(PDCP)法,用于解决二个有源网络级联问题,在此基础上,进一步发展为一般分解-收缩(GDC)法,用于解决多个有源网络互联时求符号网络函数的问题。
By applying the direted hypergraph theory,the concepts of the decomposition and contraction of a hyperedge are introduced.Chen's essential complementary partition(ECP)method for solving the cascade problem of two passive networks is improved to form a more efficient decomposition-contraction pair(DCP)method,then it is developed to form the directed(positive-rooted)decomposition-contraction pair(PDCP)method,to solve the cascade problem of two active networks.Furthermore,it is developed to form the general decomposition-contraction(GDC)method,to solve the problem of finding symbolic network functions for the interconnection of several active networks.
出处
《北京科技大学学报》
EI
CAS
CSCD
北大核心
1996年第6期557-563,共7页
Journal of University of Science and Technology Beijing
关键词
符号网络函数
有向超图
分解-收缩对法
电子电路
symbolic network function,directed hypergraph theory,decompositioncontraction pair method