摘要
本文运用P一阶拟总体列紧算子逼近理论,对介质占据三维欧氏空间中一有界凸体,散射和裂变是各向导性的具N个缓发中子群的单能非定态迁移方程。证明了:(1)、具缓发中子迁移算子的占优未征值可由相应的离散纵标迁移算了所确定的具非负未征函数且实部为最大的未征值逼近;(2)。
The time dependent neutron transport system in bounded convex media inthree一dimensionaI Euclidean space with anistropic scatting and fission and delayed neutronsis considered.By mean of the approximation theory of p一order quasi一collectively compactoperators,the following results are proved :(Ⅰ)The dominant eigenvalue of the transportoperator with delayed neutron can be approximated by the eigenvalue associated with thetransport operator of corresponding discrete一ordinate. which is the largest(in the real part)of all the other eigenvalue and has at least one nonnegative eigenfunction,(Ⅱ)The positiveeigenfunction of the dominant eigenvalue can be approximated by the nonnegative eigenfunc-tion associated with the eigenvalue of discrete ordinate transport operator with the largest(inthe real part)of all the other eigenvalue
出处
《信阳师范学院学报(自然科学版)》
CAS
1995年第1期14-21,共8页
Journal of Xinyang Normal University(Natural Science Edition)
基金
河南省教委基金
关键词
离散纵杆法
中子迁移方程
谱逼近
迁移算子
Transport equation with delayed neutrons
P一order quasi一collectivelycompact operaters
Discrete ordinate method
Dominant eigenvalue