摘要
本文通过对《九章算术》几个算例的分析和对《周髀算经》中"环矩以为圆"的解释等,说明中国古代几何学已经有了"以直径为边的圆内接三角形是直角三角形"这一重要定理,指出了这一定理的价值并与巴比伦的相应成就作了简要的比较.
The inscribed triangle of a circle is a right triangle,if it takes the diameter as a side.This is a basic and important theorem in geometry.On the basis of analysing problems in Nine Chapters on the Mathematical Art and explaining'by the revolution of a right-angled triangle to form a circle'in The Arithmetical Classic of Zhou Bi,this paper points out this theorem and its uses in ancient China,and compares it briefly with the corresponding contribution in Babylonia.
出处
《中国科技史料》
CSCD
1992年第3期66-70,共5页
China Historical Materials of Science and Technology