期刊文献+

利用卫星图像结构信息提高城市地物模式识别精度的研究 被引量:5

STUDY OF IMPROVING ACCURACY FOR URBAN LANDCOVER MODE RECOGNITION BY USING STRUCTURE INFORMATION OF SATELLITE IMAGE
下载PDF
导出
摘要 针对城市地物分布特征及其光谱特点 ,对卫星遥感数据的空间结构信息应用于城市分类进行了研究。分类结果与传统的统计模式识别方法 (Bayes法 )相比较简洁、快速 ,精度提高近 2个百分点。 When studying a task of urbanlization, the precision of mode recognition is too low to apply actually using the common statistical classification way (supervised way as Bayes). The investigative way called the Combined Spectral and Structure Classification (shortening as CSSC) more conveniently merge the spatial structure information with the spectral information of satellite image to classify, and compared with the traditional statistical way(as Bayes),the CSSC way can improve the classification precision of the identical area well considering 4 comparative precision index as Division accuracy, Error ratio, Bhattacharrya distance matrix and Kappa coefficient. This study using spatial structure reclassify the result of fuzzy classification based on spectral entirely again and reduce the fuzzy of those pixels in a mass in a furthest degree, hence, it carry out successfully the study aim of improving the precision of city land use classification and acquire several results as followings: (1) The CSSC way can conveniently merge the self possessed spatial structure information with the spectral information of satellite image to improve the classification precision. (2) The used arithmetic in this study is easy to comprehensive theoretically and carry out in practice. The result of applying in the more land cover types and more mixed pixel area like urban is very distinct. (3) Compared with the traditional statistical way(as Bayes), the CSSC way can occupy less memory ,have quick speed and spend less. It must be pointed out the CSSC way in this study only choose lesser land cover types, so it need to study more deeply for the future.
出处 《干旱区地理》 CSCD 北大核心 2001年第1期15-32,共18页 Arid Land Geography
基金 中日合作研究项目基金!资助 新疆大学自然科学基金
关键词 最优模糊聚类 地物模式识别 城市 卫星遥感数据 空间结构信息 structure infomation optimum fuzzle clustering mode recognition.
  • 相关文献

参考文献14

  • 1宁书年 徐华.遥感图像处理与应用[M].北京:地震出版社,1993.123-125.
  • 2术洪磊.人工神经网络方法在卫星遥感影像分类中的应用研究.中科院地理所博士后研究工作报告[M].,1997..
  • 3塔西浦拉提.特依拜.利用分形特征量提高土地覆盖分类图精度的研究[J].环境遥感,1994,9(2):150-160. 被引量:10
  • 4丁建丽.利用卫星图像结构信息提高城市地物模式识别精度方法的研究:硕士研究生论文[M].,1999..
  • 5张伟.分性理论在城市化研究中的应用-以乌鲁木齐为例:硕士研究生论文[M].,1998..
  • 6戴昌达 曹晓雨 等.TM数据的信息特征[J].遥感信息,1988,2.
  • 7魏文秋,陈秀万,谢淑琴.土地利用的遥感识别方法研究[J].国土资源遥感,1993,5(4):46-53. 被引量:9
  • 8丁建丽,硕士研究生论文,1999年
  • 9张伟,硕士学位论文,1998年
  • 10术洪磊,中科院地理所博士后研究工作报告,1997年

二级参考文献5

共引文献17

同被引文献30

引证文献5

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部